
Rational ® ClearCase and Rational ClearCase LT

Guide to Managing Software Projects

Version 7.0.0

Windows, UNIX, and Linux

GI11-6712-00

���

Rational ® ClearCase and Rational ClearCase LT

Guide to Managing Software Projects

Version 7.0.0

Windows, UNIX, and Linux

GI11-6712-00

���

Before using this information, be sure to read the general information under Appendix D, “Notices,” on page 295.

7th edition (May 2006)

This edition applies to version 7.0.0.0 of IBM Rational ClearCase (product number 5724G29) and IBM Rational

ClearCase LT (product number 5724G31) and to all subsequent releases and modifications until otherwise indicated

in new editions. This edition replaces G126-5330-00.

© Copyright International Business Machines Corporation 1992, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii

Who should read this book xiii

Typographical conventions xiii

Online documentation xiv

Help system xiv

Reference pages xiv

Command syntax xiv

Tutorial xiv

PDF manuals xiv

Product-specific features xiv

Manual organization xv

Related information xv

Rational ClearCase documentation roadmap . . xv

Rational ClearCase LT documentation roadmap xvi

Contacting IBM Customer Support for Rational

software products xvi

Downloading the IBM Support Assistant . . . xvii

Summary of changes xix

Part 1. Introduction 1

Chapter 1. Choosing between UCM and

base ClearCase 3

Differences between UCM and base ClearCase . . . 3

Branching and creating views 3

Using components to organize files 4

Creating and using baselines 5

Managing activities 5

Enforcing development policies 5

Part 2. Working in UCM 7

Chapter 2. Understanding UCM 9

Overview of the UCM process 9

Creating the project 11

Creating a PVOB 11

Organizing directories and files into components 11

Shared and private work areas 12

Starting from a baseline 13

Setting up the UCM integration with Rational

ClearQuest 16

Setting policies 16

Assigning work 17

Creating a testing stream 17

Building components 18

Rational ClearCase MultiSite consideration . . . 18

Making a baseline 19

After making a baseline 19

The rebase operation 19

Recommending the baseline 24

Recommended baselines 25

Monitoring project status 26

Overview of the UCM integration with Rational

ClearQuest 26

Associating UCM and Rational ClearQuest

objects 26

Schema enabled for UCM 28

State types 28

Queries in a Rational ClearQuest schema enabled

for UCM 28

Chapter 3. Planning the project 29

Using the system architecture as the starting point 29

Mapping system architecture to components . . 29

Deciding what to place under version control . . 30

Mapping components to projects 30

Organizing components 31

Deciding how many VOBs to use 31

Identifying additional components 32

Defining the directory structure 33

Identifying read-only components 33

Choosing a stream strategy 34

The basic multiple-stream project 34

Stream hierarchies 35

Stream configurations and baseline contents . . 35

Stream relationships 36

Single-stream projects 44

Read-only streams 45

Specifying a baseline strategy 45

Identifying a project baseline 46

Pure composite baselines 47

When to create baselines 51

Defining a baseline naming convention 52

Identifying promotion levels to reflect state of

development 52

Planning how to test baselines 52

Planning PVOBs 53

Deciding how many PVOBs to use 53

Understanding the role of the administrative

VOB 54

Using multiple PVOBs 54

Identifying special element types 56

Using mergetype to manage merge behavior . . 56

Defining the scope of element types 57

Planning how to use the UCM integration with

Rational ClearQuest 57

Mapping PVOBs to Rational ClearQuest user

databases 57

Deciding which schema to use 59

Chapter 4. Setting policies 63

Components and baselines policies 63

Modifiable components 63

© Copyright IBM Corp. 1992, 2006 iii

Default promotion level for recommending

baselines 64

Default view types 64

Permissions to modify projects and streams . . . 65

Allow all users to modify the project 65

Allow all users to modify the stream and its

baselines 65

Policies for all deliver operations 65

Do not allow deliver to proceed with checkouts

in the development stream 65

Rebase before delivery 65

Policies for deliver operations to nondefault targets 66

Deliver changes from the foundation in addition

to changes from the stream 67

Allow deliveries that contain changes to missing

or non-modifiable components 68

Allow interproject deliver to project or stream . . 69

Require that all source components are visible in

the target stream 69

Policies for the UCM integration with Rational

ClearQuest 69

For submitting records from a Rational ClearCase

client 69

For WorkOn 70

For delivery 70

For changing activities 72

Policies and interproject deliveries 73

Chapter 5. Setting up a Rational

ClearQuest user database for UCM . . 75

About setting up a Rational ClearQuest user

database 75

Using the predefined UCM-enabled schemas . . . 75

To set up a Rational ClearQuest user database to

work with UCM 75

Adding UCM support to an existing schema . . . 75

To enable a schema to work with UCM 76

Assigning state types to the states of a record

type 77

Requirements for enabling custom record types 78

Setting state types 78

State transition default action requirements for

record types 79

To set default actions for states 80

Upgrading your schema to the latest UCM package 80

To upgrade the schema 80

Customizing Rational ClearQuest project policies . . 81

To modify the behavior of a policy 81

Associating child activity records with a parent

activity record 81

Using parent and child controls 81

Creating users and adding credentials 82

To create Rational ClearQuest user account

profiles 82

Creating and maintaining credentials for Rational

ClearQuest database sets 82

Setting the environment (Linux and the UNIX

system) 83

Chapter 6. Setting up the project . . . 85

About setting up the project 85

Creating a project from scratch 85

Creating the project VOB 86

Creating components for storing baseline

dependencies 87

Creating components for storing elements . . . 88

Creating the project 91

Creating an integration view 93

Creating and setting an activity in the integration

stream (Linux and the UNIX system only) . . . 94

Creating the directory structure 94

Importing directories and files from outside

Rational ClearCase version control 95

Making baselines of newly populated

components 96

Creating the dependency relationships for

composite baselines in the project 96

Recommending a baseline for new components 97

Creating a project based on an existing Rational

ClearCase configuration 97

Creating the PVOB from an existing Rational

ClearCase configuration 97

Making components from existing VOBs . . . 97

Making a baseline from a label 98

Creating the project 99

Finishing the project configuration 99

Creating a project based on an existing project . . . 99

Capturing final baselines in a composite baseline 99

Creating the project from another project . . . 99

Creating an integration view 100

Enabling use of the UCM integration with Rational

ClearQuest 100

To enable a project to work with a Rational

ClearQuest user database 100

Changing the project to a different Rational

ClearQuest user database 101

Migrating activities 101

Setting project policies 101

Assigning activities 102

Disabling the link between a project and a

Rational ClearQuest user database 102

Fixing projects that contain linked and unlinked

activities 103

How the UCM integration with Rational

ClearQuest is affected by Rational ClearQuest

MultiSite 104

Working with IBM Rational Suite (Windows) . . . 105

Creating a development stream for testing

baselines 106

To create a development stream 106

Creating a feature-specific development stream . . 107

About creating feature-specific development

streams 107

Chapter 7. Managing the UCM project 109

About managing a project 109

Adding components 109

To add a component to a stream 110

To make a component modifiable within the

project 110

To synchronize a view with a new configuration 110

iv IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To synchronize a child stream with project

modifiable components 110

To synchronize a child stream view with new

parent stream configuration 111

To edit the view load rules 111

Element relocation 111

Building components 112

About building components 112

Locking the shared stream 112

Finding work that is ready to be delivered . . 113

Undoing a deliver operation 113

Building and testing the components 114

Creating a new baseline 114

About making a baseline 114

To make a baseline 115

To unlock the stream 116

Testing the baseline 116

To test in a separate development stream . . . 116

Rebasing the test development stream 117

Fixing problems in baselines 118

Recommending the baseline 118

To change a baseline promotion level 119

To recommend a baseline or set of baselines . . 119

Resolving baseline conflicts 120

Conflicts between a composite baseline and an

ordinary baseline 120

Conflicts between composite baselines 120

Monitoring project status 122

Viewing baseline histories 122

Comparing baselines 123

Querying Rational ClearQuest user databases 124

Using Rational ClearCase Reports (Windows

systems only) 125

Cleaning up the project 125

Removing unused objects 125

Locking and making obsolete the project and

streams 127

Chapter 8. Using triggers to enforce

UCM development policies 129

Overview of triggers 129

Supported triggers 129

Preoperation and postoperation triggers . . . 130

Scope of triggers 130

Using attributes with triggers 130

When to use Rational ClearQuest scripts instead

of UCM triggers 130

Sharing triggers among different types of platform 131

Using different paths or different scripts . . . 132

Using the same script 132

Tips for sharing scripts 132

Enforce serial deliver operations 133

Delivery setup script 133

Delivery preoperation trigger script 134

Delivery postoperation trigger script 135

Send mail to developers on deliver operations . . 136

E-mail notification setup script 136

E-mail notification postoperation trigger script 136

Do not allow activities to be created on the

integration stream 137

Implementing a role-based access control system 138

Role-based preoperation trigger script 139

Additional uses for UCM triggers 140

Chapter 9. Managing multiple projects 141

Project uses 141

Release-oriented projects 141

Component-oriented Projects 143

Bootstrap projects 146

Mixing project organizations 146

About managing multiple projects 147

Managing a current project and a follow-on

project simultaneously 147

To rebase an integration stream to baselines of

another project 148

Migrating unfinished work to a follow-on

project 149

Incorporating a patch release into a new version

of the project 150

Delivering work from an integration stream to

another project 151

Sharing baselines between sibling streams in

different projects 151

Merging from a project to a non-UCM branch . . 152

Part 3. Working in base ClearCase 155

Chapter 10. Managing projects in base

ClearCase 157

About base ClearCase project management . . . 157

Setting up the project 157

Creating and populating VOBs 157

Planning a branching strategy 158

Creating shared views and standard config

specs 159

Recommendations for view names 159

Implementing development policies 160

Using labels 160

Using attributes, hyperlinks, triggers, and locks 160

Global types 161

Generating reports 161

Integrating changes 161

Chapter 11. Defining project views 163

About defining project views 163

How config specs work 163

Default config spec 163

The standard configuration rules 164

Config spec include files 164

To reconfigure your view with the modified

config spec 165

Project environment for sample config specs . . . 165

Views for project development 166

View for new development on a branch . . . 166

View to modify an old configuration 167

View to implement multiple-level branching . . 168

View to restrict changes to a single directory 169

Views to monitor project status 170

View that uses attributes to select versions . . 170

View that shows changes of one developer . . 172

Contents v

Historical view defined by a version label . . . 173

Historical view defined by a time rule 173

Views for project builds 174

View that uses results of a nightly build . . . 174

Variations that select versions of project libraries 174

View that selects versions of application

subsystems 175

View that selects versions that built a particular

program 175

Sharing config specs among Linux, the UNIX

system, and Windows system 177

Path separators 177

Paths in config spec element rules 177

Config spec compilation 178

Chapter 12. Implementing project

development policies 179

About implementing project development policies 179

Good documentation of changes is required . . . 179

All source files require a progress indicator . . . 180

Label all versions used in key configurations . . . 181

Isolate work on release bugs to a branch 181

Avoid disrupting the work of other developers . . 182

Deny access to project data when necessary . . . 182

Notify team members of relevant changes 183

To attach triggers to existing elements 184

All source files must meet project standards . . . 184

Associate changes with change orders 184

Associate project requirements with source files 185

Prevent use of certain commands 187

Certain branches are shared among Rational

ClearCase MultiSite sites 187

Sharing triggers among different types of platform 188

Using different paths or different scripts . . . 188

Using the same script 189

Chapter 13. Setting up the base

ClearCase integration with Rational

ClearQuest 191

Overview of the base ClearCase integration with

Rational ClearQuest 191

What the integration does 191

How the integration works 191

Policy regarding customization and support . . 194

Checklist of configuration steps 195

Planning for the base ClearCase integration with

Rational ClearQuest 196

Setting up the Rational ClearQuest user database

for base ClearCase 196

Adding Rational ClearCase definitions to a

Rational ClearQuest schema 197

Setting policies and installing triggers in a

ClearCase VOB 197

Using a shared configuration file and triggers 198

Installing triggers in a VOB on Linux and the

UNIX system 199

To start the Rational ClearQuest Integration

Configuration tool 199

To specify multiple record types 199

To list triggers installed in a VOB 199

Quick start for evaluations 200

Editing the configuration file 200

Overview of the configuration file 200

Locating the configuration file 201

Configuration file use and format 201

Summary of configuration parameters 201

Connecting Rational ClearCase clients and a

Rational ClearQuest user database 203

Establishing the Rational ClearQuest Web

interface 203

Defining the Rational ClearQuest user database

and database set 204

Establishing the schemas 205

Establishing Rational ClearCase MultiSite

support 207

About code page conversion 207

Testing the configured connections 208

Troubleshooting the configured connections . . 209

Making policy choices 209

Allowing multiple associations 209

Controlling query usage 210

Allowing use of the graphic user interface (GUI) 211

Forcing checkin success before committing

associations 211

Enhancing performance 211

Using the association batch feature 211

Controlling and using automatic associations 214

Debugging and analyzing operations 215

Generating operational information 215

Testing the integration 216

Customizing the integration 217

About the Integration Query wizard 217

To start the Integration Query wizard 217

Chapter 14. Integrating changes . . . 219

About integrating changes 219

How merging works 219

Using the GUI to merge elements 221

Using the command line to merge elements . . 222

Common merge scenarios 222

Selective merge from a subbranch 222

Removing the contributions of some versions 223

Merging all project work 224

Merging a new release of an entire source tree 225

Merging directory versions 227

Using other merge tools 228

Chapter 15. Using element types to

customize file element processing . . 229

About element types and file processing 229

File types in a typical project 229

How element types are assigned 230

Sample magic file on the UNIX system 230

Sample Magic File on the Windows system . . 230

Element types and type managers 230

Other applications of element types 231

Predefined and user-defined element types . . . 232

Predefined and user-defined type managers . . . 232

Creating a new type manager (the UNIX

system) 232

vi IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Writing a type manager program (the UNIX

system) 233

Type manager for manual page source files . . . 233

Creating the type manager directory 234

Inheriting methods from another type manager 234

Implementing a new compare method 236

Icon use by GUI browsers 239

Chapter 16. Using Rational ClearCase

throughout the development cycle . . 241

About using Rational ClearCase throughout the

development cycle 241

Project overview 241

Development strategy 243

Project manager and Rational ClearCase

administrator 243

Use of branches 243

Creating project views 245

Creating branch types 245

Creating standard config specs 245

Creating, configuring, and registering views . . . 245

Development begins 246

Techniques for isolating your work 246

Creating baseline 1 247

Merging two branches 247

Integration and test 247

Labeling sources 248

Removing the integration view 248

Merging ongoing development work 248

Preparing to merge 249

Merging work 250

Creating Baseline 2 251

Merging from the r1_fix branch 252

Preparing to merge from the major branch . . 252

Merging from the major branch 253

Decommissioning the major branch 254

Integration and test 254

Final validation: creating Release 2.0 254

Labeling sources 255

Restricting use of the main branch 255

Setting up the test view 255

Setting up the trigger to monitor bug-fixing . . 256

Fixing a final bug 256

Rebuilding from labels 257

Wrapping up 257

Part 4. Appendixes 259

Appendix A. Moving from view

profiles to UCM 261

View profiles and UCM 261

Feature comparison 261

Moving view profile information to UCM 262

Preparing your view profile project 262

Moving the view profile information 262

Appendix B. Rational ClearCase

integrations with Rational ClearQuest . 263

Understanding the Rational ClearCase integrations

with Rational ClearQuest 263

Managing coexisting integrations 263

Schema usage with both integrations 264

Presentation 264

Appendix C. Customizing Rational

ClearCase Reports 265

How Rational ClearCase Reports works 265

What you can customize in Rational ClearCase

Reports 265

Run-Time processing sequence for Reports

programming interface 266

Configuring shared report directories 268

Default directory structure for Rational

ClearCase Reports 268

Populating the Report Builder tree pane . . . 269

Report Procedure interface specifications 270

Interface specification for All_Views.prl 270

Description specification 270

Help files 271

Parameters specification 271

Rightclick specification 272

Fields specification 273

Parameter choosers 274

Viewing the report 275

Saving report data 276

Report programming examples 276

Example 1: Adding a column to report output 277

Example 2: changing directory organization,

description, and output 279

Example 3: changing description, parameter

types, and output 283

Example 4: changing the pop-up menu for

right-click handling 286

Example 5: adding a new command to Report

Viewer pop-up menu 288

Troubleshooting customization 292

Errors in the interface specification 292

Coding high-level languages other than ccperl . . 293

Obtaining the T0046 package 293

Appendix D. Notices 295

Index 299

Contents vii

viii IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Figures

 1. Branching hierarchy in base ClearCase 4

 2. Project manager, developer, and integrator

work flows 10

 3. VOB containing multiple components 12

 4. Baselines of two components 13

 5. Composite baseline 14

 6. Baseline predecessors and descendants 15

 7. Rebase operation 19

 8. Advance rebase operation 21

 9. A test stream to stabilize a baseline 22

10. Promoting baselines 25

11. Association of UCM and Rational ClearQuest

objects in integration 27

12. Components used by Transaction Builder

project 31

13. Storing multiple components in a VOB 32

14. Using a read-only component 34

15. Using a feature-specific development stream 35

16. Stream relationships 37

17. Stream hierarchy with multiple levels 38

18. Direct stream relationships for alternate target

deliver operations 39

19. Indirect stream relationships for alternate

target deliver operations 40

20. Alternate target intra-project deliver operation 41

21. Sharing changes by a rebase operation . . . 42

22. Sharing changes by an alternate target deliver

operation 43

23. Rebase operation and alternate target deliver

operation 44

24. Using a system-level composite baseline 46

25. Loosely coupled relationship between

baselines 47

26. Tightly coupled relationship between baselines 48

27. Changing a regular composite to a pure

composite baseline 50

28. Creation of a composite baseline descendant 50

29. Related projects sharing one PVOB 54

30. Using one PVOB as an administrative VOB for

multiple PVOBs 55

31. Multiple PVOBs linked to the same Rational

ClearQuest user database 58

32. One schema repository for multiple Rational

ClearQuest user databases 59

33. Component modifiability and visibility 63

34. Default and nondefault deliver targets in a

stream hierarchy 66

35. Delivering changes made in a foundation

baseline 68

36. State transitions of UCM-enabled

BaseCMActivity record type 79

37. A test stream to stabilize a baseline 117

38. Composite baselines with the same

component 120

39. Composite baselines with a conflict 121

40. Composite baselines with an override

baseline 121

41. An organization for release-oriented projects 142

42. Structure for component-oriented projects 144

43. Composite baselines representing subsystems 145

44. Managing a follow-on release 148

45. Alternate target inter-project deliver operation 149

46. Incorporating a patch release 150

47. Baselines distributed to a different project 152

48. Making a change to an old version 168

49. Multiple-level auto-make-branch 169

50. Development config spec versus QA config

spec 171

51. Checking out a branch of an element 172

52. Requirements tracing 186

53. Versions involved in a typical merge 220

54. Rational ClearCase merge algorithm 220

55. Selective merge from a subbranch 223

56. Removing the contributions of some versions 224

57. Merging a new release of an entire source

tree 226

58. Project plan for Release 2.0 development 242

59. Development milestones: evolution of a

typical element 244

60. Creating baseline 1 247

61. Updating major enhancements development 249

62. Merging Baseline 1 changes into the major

branch 251

63. Baseline 2 252

64. Element structure after the pre-Baseline-2

merge 254

65. Final test and release 255

66. Run-time processing sequence 267

© Copyright IBM Corp. 1992, 2006 ix

x IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Tables

 1. Recommended directory structure for

components 33

 2. State Types in UCM-Enabled Schema 78

 3. Environment variables required for integration 83

 4. Queries in a UCM-enabled schema 124

 5. Configuration checklist 195

 6. Configuration parameters summary 202

 7. Files used in a typical project 229

 8. View profile features and their UCM

counterparts 262

 9. Parameters supplied with Rational ClearCase

Reports 271

10. Fields modifiers 273

11. Field type supplied with Rational ClearCase

Reports 273

© Copyright IBM Corp. 1992, 2006 xi

xii IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

About this book

This manual shows project managers how to set up and manage a configuration

management environment for their development team. It describes how to use the

Unified Change Management (UCM) process and the customizable features of base

ClearCase.

IBM Rational ClearCase is a configuration management system designed to help

software development teams track the objects in software builds. You can adopt the

UCM process, or you can use base ClearCase to create a customized configuration

management environment.

Who should read this book

A reader needs to understand the base concepts of Rational ClearCase and be able

to use either the command line or graphic user interface of Rational ClearCase.

Typographical conventions

This manual uses the following typographical conventions:

v ccase–home–dir represents the directory into which Rational ClearCase, Rational

ClearCase LT, or Rational ClearCase MultiSite has been installed. By default, this

directory is /opt/rational/clearcase on the UNIX system and C:\Program

Files\Rational\ClearCase on Windows.

v cquest-home-dir represents the directory into which Rational ClearQuest has been

installed. By default, this directory is /opt/rational/clearquest on the UNIX

system and C:\Program Files\Rational\ClearQuest on Windows.

v Bold is used for names the user can enter; for example, command names and

branch names.

v A sans-serif font is used for file names, directory names, and file extensions.

v A serif bold font is used for GUI elements; for example, menu names and

names of check boxes.

v Italic is used for variables, document titles, glossary terms, and emphasis.

v A monospaced font is used for examples. Where user input needs to be

distinguished from program output, bold is used for user input.

v Nonprinting characters appear as follows: <EOF>, <NL>.

v Key names and key combinations are capitalized and appear as follows: Shift,

Ctrl+G.

v [] Brackets enclose optional items in format and syntax descriptions.

v { } Braces enclose a list from which you must choose an item in format and

syntax descriptions.

v | A vertical bar separates items in a list of choices.

v ... In a syntax description, an ellipsis indicates you can repeat the preceding item

or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard,

similar to “*” or “?”. For more information, see the wildcards_ccase

reference page.

© Copyright IBM Corp. 1992, 2006 xiii

v If a command or option name has a short form, a “slash” (/) character

indicates the shortest legal abbreviation. For example:

lsc/heckout

Online documentation

This section describes how you can access the online documentation for Rational

ClearCase products.

Help system

To access the Help, use the Help menu, the Help button, or the F1 key. To display

the contents of the online documentation set, perform one of the following actions:

v On Linux or the UNIX system, type cleartool man contents .

v On Windows, click Start > Programs > IBM Rational > IBM Rational

ClearCase > Help.

v On Windows, Linux, or the UNIX system, to display contents for Rational

ClearCase MultiSite, type multitool man contents.

v Use the Help button in a window to display information about that window, or

press F1.

Reference pages

To access reference pages from the IBM Rational ClearCase Command Reference, use

the cleartool man and multitool man commands. For more information, see the

man reference page in the IBM Rational ClearCase Command Reference.

Command syntax

To access online documentation by using the command line, use the –help

command option or the cleartool help command.

Tutorial

The tutorial for a Rational ClearCase product provides a step-by-step tour of the

important features of the product. To start the tutorial, perform one of the

following actions:

v On Linux or the UNIX system, type cleartool man tutorial .

v On Windows, click Start > Programs > IBM Rational > IBM Rational

ClearCase > ClearCase Tutorial.

PDF manuals

To access PDF manuals for Rational ClearCase products, use the command line to

navigate to the following directories:

v On Linux or the UNIX system, ccase–home–dir/doc/books

v On Windows, ccase–home–dir\doc\books

Product-specific features

This manual describes Rational ClearCase and Rational ClearCase LT. Rational

ClearCase LT does not include all features available in Rational ClearCase. In

addition, some user interfaces differ in the two environments. This manual uses

the following label to call out differences: Product Note. When the term Rational

ClearCase is used outside of a Product Note section, it refers to both products.

xiv IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Manual organization

The manual is divided into the following parts:

v Part 1, “Introduction.” An introductory part highlights the features of UCM and

base ClearCase.

v Part 2, “Working in UCM.” Read this part if you plan to use UCM to implement

your team’s development process.

v Part 3, “Working in base ClearCase.” Read this part if you plan to use the base

ClearCase features to implement a customized development process for your

team.

Several appendices carry information of special interest and legal notices.

Related information

Rational ClearCase documentation roadmap

More Information
Command Reference

Online documentation
Help files

Installation and Upgrade Guide

Administrator's Guide
(Rational ClearCase/

Rational ClearCase LT)

Administrator's Guide
(Rational ClearCase MultiSite)

Platforms Guide
(Rational ClearCase)

Project
Management

Orientation

Software
Development

Build
Management Administration

Guide to Managing Software Projects

Introduction
Release Notes
Online tutorials

Developing Software (online help)

Guide to Building Software

OMAKE Guide
(Windows platforms)

Administrator's Guide

Guide to Deployment Tracking
(Rational ClearCase/Rational ClearQuest)

About this book xv

Rational ClearCase LT documentation roadmap

More Information

Online documentation
Help files

Command Reference

Administration

Project
Management

Orientation

Software
Development

Installation and Upgrade Guide

Administrator's Guide

Guide to Managing Software Projects

Online tutorials

Release Notes

Introduction

Developing Software (online documentation)

Contacting IBM Customer Support for Rational software products

If you have questions about installing, using, or maintaining this product, contact

IBM Customer Support as follows:

The IBM software support Internet site provides you with self-help resources and

electronic problem submission. The IBM Software Support Home page for Rational

products can be found at http://www.ibm.com/software/rational/support/.

Voice Support is available to all current contract holders by dialing a telephone

number in your country (where available). For specific country phone numbers, go

to http://www.ibm.com/planetwide/.

Note: When you contact IBM Customer Support, please be prepared to supply the

following information:

v Your name, company name, ICN number, telephone number, and e-mail

address

v Your operating system, version number, and any service packs or patches

you have applied

v Product name and release number

v Your PMR number (if you are following up on a previously reported

problem)

xvi IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

http://www.ibm.com/software/rational/support/
http://www.ibm.com/planetwide/

Downloading the IBM Support Assistant

The IBM Support Assistant (ISA) is a locally installed serviceability workbench that

makes it both easier and simpler to resolve software product problems. ISA is a

free, stand-alone application that you download from IBM and install on any

number of machines. It runs on AIX, (RedHat Enterprise Linux AS), HP-UX,

Solaris, and Windows platforms.

ISA includes these features:

v Federated search

v Data collection

v Problem submission

v Education roadmaps

For more information about ISA, including instructions for downloading and

installing ISA and product plug-ins, go to the ISA Software Support page.

IBM Support Assistant: http://www.ibm.com/software/support/isa/

About this book xvii

http://www.ibm.com/software/support/isa/

xviii IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Summary of changes

This edition adds material describing composite baselines, the usage of multiple

UCM projects, and the set up of the base ClearCase integration with Rational

ClearQuest.

v In Chapter 2, new sections under “Starting from a baseline” on page 13, describe

composite baselines, baselines and their uses, and baselines and streams. Under

“Making a baseline” on page 19, new sections describe the rebase operation,

directions of rebase operations (advance, revert, and lateral), and rules for rebase

operations.

v In Chapter 3, the following information is new:

– Under “Identifying read-only components” on page 33, new text describes

modifiability of components without a VOB root directory.

– Under “Choosing a stream strategy” on page 34, new sections describe stream

configurations, baseline contents, and stream relationships.

– Under “Pure composite baselines” on page 47, new sections describe

dependency relationships in composite baselines, pure composite baselines

and whether to use them, and creation of composite baseline descendants.

– Under “Multiple PVOBs and feature levels” on page 56, a new section

describes feature levels in environments with multiple PVOBs.

– Under “Using mergetype to manage merge behavior” on page 56, a new

mergetype, copy, is described.

– In “Planning how to use the UCM integration with Rational ClearQuest” on

page 57, under “Use of multiple user databases” on page 59, the need for

unique names is described.
v In Chapter 4, under “Policies for the UCM integration with Rational ClearQuest”

on page 69, two new policies are described: “Disallow submitting records from

ClearCase client” on page 69 and “Allowed record types” on page 70.

v In Chapter 5, under “Creating users and adding credentials” on page 82, a new

section describes creating and maintaining credentials for Rational ClearQuest

database sets used in the UCM integration.

v In Chapter 7, the following information is new:

– Under “Adding components” on page 109, a new section, “Element

relocation” on page 111, describes the use of the mkelem_cpver.pl script.

– Under “Resolving baseline conflicts” on page 120, new information is added

to the section “Conflicts between composite baselines” on page 120.
v In Chapter 8, under “Supported triggers” on page 129, lock and unlock are

added. Also, under “Using the same script” on page 132, the invocation of

ratlperl is described.

v Chapter 9, in “Project uses” on page 141, has new information that describes

release-oriented and component-oriented projects and composite baselines in

each type, and describes bootstrap projects.

v In Chapter 12, under “Using the same script” on page 189, the invocation of

ratlperl is described.

v Chapter 13 consolidates information from multiple sources to describe the base

ClearCase integration with Rational ClearQuest.

– “Planning for the base ClearCase integration with Rational ClearQuest” on

page 196

© Copyright IBM Corp. 1992, 2006 xix

– “Setting up the Rational ClearQuest user database for base ClearCase” on

page 196

– “Editing the configuration file” on page 200

– “Connecting Rational ClearCase clients and a Rational ClearQuest user

database” on page 203

– “Making policy choices” on page 209

– “Enhancing performance” on page 211

– “Debugging and analyzing operations” on page 215
v In Chapter 14, under “Common merge scenarios” on page 222, a new procedure

is described in “Merging a new release of an entire source tree” on page 225 for

using clearfsimport to accomplish the merge.

xx IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 1. Introduction

© Copyright IBM Corp. 1992, 2006 1

2 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 1. Choosing between UCM and base ClearCase

Before you can start to use IBM® Rational® ClearCase® to manage the version

control and configuration needs of your development project, you need to decide

whether to use the out-of-the-box Unified Change Management (UCM) process or

base ClearCase. This chapter describes the main differences between the two

methods from the project management perspective.

The next two parts of this manual present conceptual and usage material for each

method from the perspective of the project manager and project integrator. Part 2,

“Working in UCM” describes how to manage a project using UCM. Part 3,

“Working in base ClearCase,” on page 155 describes how to manage a project

using the various tools in base ClearCase.

Differences between UCM and base ClearCase

Base ClearCase consists of a set of powerful tools to establish an environment in

which developers can work in parallel on a shared set of files, and project

managers can define policies that govern how developers work together.

UCM is one recommended method of using Rational ClearCase for version control

and configuration management. UCM is layered on base ClearCase. Therefore, it is

possible to work efficiently in UCM without having to master the details of base

ClearCase.

UCM offers the convenience of an out-of-the-box solution; base ClearCase offers

the flexibility to implement virtually any configuration management solution that

you deem appropriate for your environment.

Branching and creating views

Branches are used in base ClearCase to enable parallel development. A branch is an

object that specifies a linear sequence of versions of an element. Every element has

one main branch, which represents the principal line of development, and may

have multiple subbranches, each of which represents a separate line of

development. For example, a project team may use the main branch for new

development work while using a subbranch simultaneously for fixing a bug.

Subbranches can have subbranches. For example, a project team may designate a

subbranch for porting a product to a different platform. The team may then decide

to create a bug-fixing subbranch off that porting subbranch. You can create

complex branch hierarchies. Figure 1 illustrates a multilevel branch hierarchy. As a

project manager in such an environment, you need to ensure that developers are

working on the correct branches. Developers work in views. A view is a work area

for developers to create versions of elements. Each view includes a config spec,

which is a set of rules that determines which versions of elements the view selects.

© Copyright IBM Corp. 1992, 2006 3

As project manager, you tell developers which rules to include in their config specs

so that their views access the appropriate set of versions.

UCM uses branches also, but you do not have to manipulate them directly because

it layers streams over the branches. A stream is a Rational ClearCase object that

maintains a list of activities and baselines and determines which versions of

elements appear in a developer’s view. In UCM, a multiple-stream project contains

one integration stream, which records the shared set of elements of the project, and

multiple development streams in which developers work on their parts of the project

in isolation from the team. The project integration stream uses one branch. Each

development stream uses its own branch. You can create a hierarchy of

development streams, and UCM creates the branching hierarchy to support those

streams.

Although most customers use Rational ClearCase to implement a parallel

development environment, UCM and base ClearCase also support serial

development. In base ClearCase, you implement a serial development environment

by having all developers work on the same branch. In UCM, you create a

single-stream project, which contains one stream, the integration stream. All

developers work on the integration stream rather than on development streams.

Serial development is intended only for very small project teams whose developers

work together closely.

As project manager of a UCM project, you need not write rules for config specs.

Streams configure developers’ views to access the appropriate versions on the

appropriate branches.

Using components to organize files

As the number of files and directories in your system grows, you need a way to

reduce the complexity of managing them. In UCM, you use components to

simplify the organization of your files and directories. The elements that you group

into a component typically implement a reusable piece of your system architecture.

0

1

2

3

main

0

1

2

r1_bugs

4

0

1

2

3

4

alpha_port

3

0

1

bug102

Figure 1. Branching hierarchy in base ClearCase

4 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

By organizing related files and directories into components, you can view your

system as a small number of identifiable components, rather than one large set of

directories and files.

Creating and using baselines

A baseline identifies one version of every element in one or more components. You

use baselines to identify the set of versions of files that represent a project at a

particular milestone. For example, you may create a baseline called beta1 to

identify an early snapshot of project source files.

Baselines provide two main benefits:

v The ability to reproduce an earlier release of a software project

v The ability to tie together the complete set of files related to a project, such as

source files, a product requirements document, a documentation plan, functional

and design specifications, and test plans

UCM automates the creation process and provides additional support for

performing operations on baselines. In base ClearCase, you can create the

equivalent of a baseline by creating a version label and applying that label to a set

of versions.

In UCM, baseline support appears throughout the user interface because UCM

requires that you use baselines. When developers join a project, they must first

populate their work areas with the contents of the recommended baseline of their

parent stream. This method ensures that all team members start with the same set

of shared files. In addition, UCM lets you set a property on the baseline to indicate

the quality level of the versions that the baseline represents. Examples of quality

levels include “project builds without errors,” “passes initial testing,” and “passes

regression testing.” By changing the quality-level property of a baseline to reflect a

higher degree of stability, you can, in effect, promote the baseline.

Managing activities

In base ClearCase, you work at the version and file level. UCM provides a higher

level of abstraction: activities. An activity is a Rational ClearCase object that you

use to record the work required to complete a development task. For example, an

activity may be to change a graphical user interface (GUI). You may need to edit

several files to make the changes. UCM records the set of versions that you create

to complete the activity in a change set. Because activities appear throughout the

UCM user interface, you can perform operations on sets of related versions by

identifying activities rather than having to identify numerous versions.

Because activities correspond to significant project tasks, you can track the progress

of a project more easily. For example, you can determine which activities were

completed in which baselines. If you use the UCM integration with IBM Rational

ClearQuest®, you gain additional project management control, such as the ability

to assign states and state transitions to activities. You can then generate reports by

issuing queries such as “show me all activities assigned to Pat that are in the

Ready state.”

Enforcing development policies

A key part of managing the configuration management aspect of a software project

is establishing and enforcing development policies. In a parallel development

environment, it is crucial to establish rules that govern how team members access

and update shared sets of files. Such policies are helpful in two ways:

Chapter 1. Choosing between UCM and base ClearCase 5

v They minimize project build problems by identifying conflicting changes made

by multiple developers as early as possible.

v They establish greater communication among team members.

These are examples of common development policies:

v Developers must synchronize their private work areas with the project

recommended baseline before delivering their work to the project shared work

area.

v Developers must notify other team members by e-mail when they deliver work

to the project shared work area.

In base ClearCase, you can use tools such as triggers and attributes to create

mechanisms to enforce development policies. UCM includes a set of common

development policies, which you can set through the graphic user interface (GUI)

or command-line interface (CLI). You can set these policies at the project and

stream levels. In addition, you can use triggers and attributes to create new UCM

policies.

6 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 2. Working in UCM

© Copyright IBM Corp. 1992, 2006 7

8 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 2. Understanding UCM

This chapter provides an overview of Unified Change Management (UCM), which

is available with Rational ClearCase. Specifically, it introduces the main UCM

objects and describes the tasks involved in managing a UCM project. Subsequent

chapters describe in detail the steps required to perform these tasks.

Overview of the UCM process

In UCM, your work follows a cycle that complements an iterative software

development process. Members of a project team work in a UCM project. A project

is the object that contains the configuration information needed to manage a

significant development effort, such as a product release. A project contains one

main shared work area and typically multiple private work areas. Private work

areas allow developers to work on activities in isolation. The project manager and

integrator are responsible for maintaining the project shared work area. Work

within a parallel development environment progresses as follows:

 1. You create a project and identify an initial set of baselines of one or more

components. A component is a group of related directory and file elements,

which you develop, integrate, and release together. A baseline is a version of

one or more components.

 2. Developers join the project by creating their private work areas and

populating them with the contents of baselines that are used by the team.

 3. You or your developers create activities and the developers work on one

activity at a time. An activity records the set of files that a developer creates or

modifies to complete a development task, such as fixing a bug. This set of

files associated with an activity is known as a change set.

 4. When developers complete activities, they build and test their work in their

private work areas.

 5. They share their tested work with the project team by performing deliver

operations. A deliver operation merges work from the developer’s private

work area to the project shared work area.

 6. Periodically, the integrator builds the project executable files in the shared

work area, using the delivered work.

 7. If the project builds successfully, the integrator creates new baselines. In a

separate work area, a team of software quality engineers performs more

extensive testing of the new baselines.

 8. Periodically, as the quality and stability of baselines improve, the integrator

adjusts the promotion level attribute of baselines to reflect appropriate

milestones, such as Built, Tested, or Released. When the new baselines pass a

sufficient level of testing, the integrator designates them as the recommended

set of baselines.

 9. Developers perform rebase operations to update their private work areas to

include the set of versions represented by the new recommended baselines.

10. Developers continue the cycle of working on activities, delivering completed

activities, updating their private work areas with new baselines.

© Copyright IBM Corp. 1992, 2006 9

Figure 2 illustrates the connection between the project management, development,

and integration cycles. This manual describes the steps performed by project

managers and integrators. See Developing Software online help for information

about the steps performed by developers.

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

Developer

Deliver
activities

Rebase
work areas

Work on
activities

Join a
project

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

Figure 2. Project manager, developer, and integrator work flows

10 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Creating the project

 To create and set up a project, you must perform the following tasks:

v Create a repository for storing project information

v Create components that contain the set of files that the developers work on

v Create baselines that identify the versions of files with which the developers

start their work

To use the UCM integration with Rational ClearQuest, you must perform

additional setup tasks.

Creating a PVOB

File elements, directory elements, derived objects, and metadata are stored in a

Rational ClearCase repository called a versioned object base (VOB). In UCM, each

project must have a project VOB (PVOB). A PVOB is a special kind of VOB that

stores UCM objects, such as projects, activities, and change sets. A PVOB must

exist before you can create a project. Check with your site Rational ClearCase

administrator to see whether a PVOB has already been created. For details on

creating a PVOB, see “Creating the project VOB” on page 86.

Organizing directories and files into components

As the number of files and directories in your system grows, you need a way to

reduce the complexity of managing them. Components are the UCM mechanism

for simplifying the organization of your files and directories. The elements that

you group into a component typically implement a reusable piece of your system

architecture. By organizing related files and directories into components, you can

view your system as a small number of identifiable components, rather than as one

large set of directories and files.

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

Create a
PVOB

Create
components

Create
baselines

Set up ClearQuest
integration

Chapter 2. Understanding UCM 11

The directory and file elements of a component reside physically in a VOB. The

component object resides in a PVOB. Within a component, you organize directory

and file elements into a directory tree (see Figure 3).

The directory trees for the GUI, Admin, and Reports components appear directly

under the VOB root directory. You can convert existing VOBs or directory trees

within VOBs into components, or you can create a component from scratch. For

details on creating a component from scratch, see “Creating components for storing

elements” on page 88. For details on converting a VOB into a component, see “To

make a VOB into a component” on page 97.

Shared and private work areas

A work area consists of a view and a stream. A view is a directory tree that shows

a single version of each file in your project. A stream is a Rational ClearCase object

that maintains a list of activities and baselines and determines which versions of

elements appear in your view.

A project contains one integration stream, which records the project baselines and

enables access to shared versions of the project elements. The integration stream

and a corresponding integration view represent the project main shared work area.

In a typical project, each developer has a private work area, which consists of a

development stream and a corresponding development view. The development

stream maintains a list of the developer’s activities and determines which versions

of elements appear in the developer’s view.

When you create a project from the UCM graphic user interface (GUI), the

integration stream is created for you. If you create a project from the command-line

interface, you need to create the integration stream explicitly. Developers create

their development streams and development views when they join the project. See

Developing Software online help for information on joining a project.

Stream hierarchies

In the basic UCM process, the integration stream is the only shared work area for

the entire project. In a multiple-stream project, you may want to create additional

shared work areas for developers who are working together on specific parts of the

project. You can accomplish this by creating a hierarchy of development streams.

For example, you can create a development stream and designate it as the shared

VOBPVOB

Project A

GUI
Admin

Reports

Project B

/Dev

GUI

Admin

Reports

Figure 3. VOB containing multiple components

12 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

work area for developers working on a particular feature. Developers then join the

project at the development stream level (rather than at the integration stream) and

create their own development streams and views under the development stream

for this feature. The developers deliver work to and rebase their streams to

recommended baselines in the development stream for the feature. See “Choosing

a stream strategy” on page 34 for details on development stream hierarchies.

Single-stream projects

Although UCM is typically used to implement a parallel development

environment, UCM also supports serial development by letting you create a

single-stream project. A single-stream project contains one stream, the integration

stream. All developers work on the integration stream rather than on development

streams. Developers have their own views that are attached to the integration

stream. Serial development should be used only for very small project teams

whose developers work together closely. See “Choosing a stream strategy” on page

34 for details on single-stream projects.

Starting from a baseline

After you create project components or select existing components, you must

identify and recommend the baseline or baselines that serve as the starting point

for the team of developers. Just as a component represents a collection of elements,

a baseline represents a collection of versions within a component. An ordinary

baseline identifies one version of every element visible in a single component (see

Figure 4).

Baselines named BL1 and BL2 in the integration stream identify the versions in

component A and component B, respectively.

When developers join the project, they populate their work areas with the versions

of directory and file elements represented by the recommended baselines of the

project. Alternatively, developers can join the project at a feature-specific

Component A

Baseline BL1

Component B

Baseline BL2

Element

Element

Version
Version

Integration stream

Figure 4. Baselines of two components

Chapter 2. Understanding UCM 13

development stream level, in which case they populate their work areas with the

development stream’s recommended baselines. This practice ensures that all

members of the project team start with the same set of files.

Composite baselines

If your project team works on multiple components, you may want to use a

composite baseline. A composite baseline selects baselines in other components (see

Figure 5).

The PB1 composite baseline selects baselines BL1 and BL2 of components A and B,

respectively. The Proj component does not contain any elements of its own. It

contains only the composite baseline that selects the recommended baselines of the

project components. By using a composite baseline in this manner, you can identify

one baseline to represent multiple baselines, and, by extension, the entire project.

Baselines and their uses

A baseline is a snapshot of a component at a particular time. It comprises the set of

versions that are selected in the stream at the time the baseline was made. When a

new stream is configured, baselines are used to specify which versions are to be

selected in that stream. Baselines are immutable so that a particular configuration

can be reproduced as needed and streams that use the same set of baselines are

guaranteed to have the same configuration. Therefore, the set of versions included

in a baseline cannot be modified.

Baselines that are created in the context of a stream are ordered relative to each

other (see Figure 6). Within a single stream, an old baseline is referred to as an

ancestor of a newer baseline. The newer baseline is called a descendant of the old

baseline. The closest ancestor of a baseline is its predecessor. The foundation baselines

(or the foundation set) of a stream, which are created in a different stream, are the

predecessors of the first baselines created in this stream.

Component Proj

Component A

Component B

Baseline BL1

Baseline

Baseline BL2

PB1

Figure 5. Composite baseline

14 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

In Figure 6, baseline BL1 is the predecessor of baseline BL2 and baseline BL2 is a

descendant of baseline BL1. When baseline BL2 was created, there were new

versions of prog.c, msg.h, and util.h, but for the files lib.c and num.h, baseline BL2

falls back to the baseline BL1 versions. Similarly, baseline BL3 is a descendant of

baseline BL2; and baselines BL1 and BL2 are predecessors of baseline BL3. Baseline

BL3 captures changes made after baseline BL2 was created, but it uses the baseline

BL1 version of num.h and the baseline BL2 version of msg.h. Because version 4 of

msg.h is checked out, it is not included in baseline BL3.

In the relationship among baselines, a descendant contains its predecessors so that,

for example, all changes captured in baseline BL2 are also in baseline BL3.

The relationship between a baseline and a component is very similar to the

relationship between a version and an element. For example, baselines exist in

streams, but versions exist on branches. Both baselines and versions have

predecessors.

Baselines have the following uses:

v Record work done and mark milestones.

v Define stream configurations.

v Provide access to delivered work.

Baselines and streams

Baselines and streams have a mutual relationship: baselines are produced by

streams, and streams use baselines for their configuration. A stream is configured

with a set of baselines, called its foundation, which defines which versions are

selected in that stream. Views that are attached to the stream see the versions of

elements that are selected by the foundation baselines and any new versions that

are created from changes that are made in the stream.

A stream includes a baseline from every component that it needs to access, both

for modifiable and non-modifiable components.

prog.c lib.c

1

num.h

1

2

3

1

2

3

4

msg.h util.h

11

2

3

4

2

3

Checked-in version

Checked-out version

Bl1

Bl2

Bl3

Figure 6. Baseline predecessors and descendants

Chapter 2. Understanding UCM 15

Setting up the UCM integration with Rational ClearQuest

You can use UCM without Rational ClearQuest, the change request management

tool, but the UCM integration with RationalClearQuest adds significant project

management and activity management capabilities. When you enable a UCM

project to work with Rational ClearQuest, the integration links all UCM activities

to Rational ClearQuest records. You can then take advantage of the UCM and

Rational ClearQuest state transition model and the query features of Rational

ClearQuest. Reporting and charting features are available on the Windows®

system. These features allow you to do the following:

v Assign activities to developers

v Use states and state transition rules to manage activities

v Generate reports based on database queries

v Select additional development policies to be enforced

To set up the UCM integration with Rational ClearQuest, you enable a Rational

ClearQuest schema to work with UCM or use a predefined schema that is enabled

for UCM. Then, you either create a new Rational ClearQuest user database or

upgrade an existing Rational ClearQuest user database to use the UCM-enabled

schema. When the Rational ClearQuest environment is established, you enable

your UCM project to work with Rational ClearQuest. For additional information

about the integration, see “Overview of the UCM integration with Rational

ClearQuest” on page 26.

Setting policies

 UCM includes a set of policies that you can set to enforce development practices

among members of the project team. By setting policies, you can improve

communication among project team members and minimize the problems you may

encounter when integrating their work. For example, you can set a policy that

requires developers to update their work areas with the latest recommended

baseline of the project before they deliver work. This practice reduces the

likelihood that developers will need to work through complex merges when they

deliver their work. For a description of all policies you can set in UCM, see

Chapter 4, “Setting policies,” on page 63. You can set policies on projects and

streams.

In addition to the set of policies that UCM provides, you can create triggers on

UCM operations to enforce customized development policies. See Chapter 8,

“Using triggers to enforce UCM development policies,” on page 129 for details

about creating triggers.

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

16 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Assigning work

 This task is optional and is possible only if you use the UCM integration with

Rational ClearQuest. As project manager, you are responsible for identifying and

scheduling the high-level tasks for your project team. In some organizations, the

project manager creates activities and assigns them to developers. In other

organizations, the developers create their own activities. See “Assigning activities”

on page 102 for details on creating and assigning activities in a Rational

ClearQuest user database.

Creating a testing stream

 In your role as project integrator, you are responsible for building the work

delivered by developers, creating baselines, and testing those baselines. When you

make baselines in the integration stream, you lock the stream to prevent

developers from delivering work. This practice ensures that you work with a static

set of files. It is acceptable to perform quick validation tests of the new baselines in

the integration stream. However, you should not lock the integration stream for a

long time because you will create a backlog of deliveries. To perform more

rigorous testing, such as regression testing, you should create a development

stream to be used solely for stabilizing and testing baselines. See “Creating a

development stream for testing baselines” on page 106 for details on creating a

testing stream.

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

Chapter 2. Understanding UCM 17

Building components

 Before you make new baselines, build the components in the integration stream by

using the current baselines plus any work that developers have delivered to the

stream since you created the current baselines. Lock the integration stream before

you build the components to ensure that you work with a static set of files. If the

build succeeds, you can make baselines that select the latest delivered work. If

your project uses feature-specific development streams, perform this task on those

streams and on the integration stream.

Rational ClearCase MultiSite consideration

Product Note: Rational ClearCase LT does not support Rational ClearCase

MultiSite®.

In most cases, developers complete the deliver operations that they start. If your

project uses Rational ClearCase MultiSite, you may need to complete some deliver

operations before you can build the components. Many customers use Rational

ClearCase MultiSite, a product layered on Rational ClearCase, to support parallel

software development across geographically distributed project teams. Rational

ClearCase MultiSite lets developers work on the same VOB concurrently at

different locations. Each location works on its own copy of the VOB, known as a

replica.

To avoid conflicts, Rational ClearCase MultiSite uses an exclusive-right-to-modify

scheme, called mastership. VOB objects, such as streams and branches, are assigned

a master replica. The master replica has the exclusive right to modify or delete these

objects.

In a Rational ClearCaseMultiSite configuration, a team of developers may work at

a remote site, and the integration stream of the project may be mastered at a

different replica than the developers’ development streams. In this situation, the

developers cannot complete deliver operations to the integration stream. As project

integrator, you must complete these deliver operations. UCM provides a variation

of the deliver operation called a remote delivery. When UCM determines that the

integration stream is mastered at a remote site, it makes the deliver operation a

remote delivery and posts the delivery, which starts the deliver operation but does

not merge any versions. You then find the posted delivery and complete the

deliver operation at the remote site.

For information on completing remote deliver operations, see “Finding work that

is ready to be delivered” on page 113.

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

18 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Making a baseline

 To ensure that developers stay in sync with each other’s work, make new baselines

regularly. A new baseline includes the work developers have delivered to the

parent stream since the last baseline. If your project uses feature-specific

development streams, perform this task on those streams and on the integration

stream. In some environments, the lead developer working on a feature may

assume the role of integrator for a feature-specific development stream.

After making a baseline

After your team of software quality engineers tests the new baseline more

extensively and determines that it is stable, you make the baseline the

recommended baseline.

The rebase operation

To take advantage of a newly recommended baseline, developers update their

work areas with the new baseline by performing a rebase operation (see Figure 7).

A component in Pat’s development stream is configured with baseline BL1. A

rebase operation changes the configuration of the stream to baseline BL2 from the

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

Rebasing

Pat's
development
work area

Pat's
development
work area
after rebase

BL1 BL2

Integration
stream

Figure 7. Rebase operation

Chapter 2. Understanding UCM 19

integration stream. The rebase operation merges files and directories from the

integration stream or feature-specific development stream to the development

stream.

A rebase operation reconfigures a stream by adding, dropping, or replacing one or

more of the stream foundation baselines. It is typically used to advance a stream’s

configuration, that is, to replace its current foundation baselines with descendant

ones. For more information about baselines, see “Baselines and their uses” on page

14.

Foundation baselines of the target stream are replaced with the set of

recommended baselines from the source stream.

If an element in the stream being rebased contains any changes, the rebase

operation merges the changes into the latest version of that element in the stream,

thereby creating a new version. All such new versions are captured in the change

set of the integration activity that the rebase operation creates.

The rebase operation changes the foundation baselines of a stream. Baselines

provide a configuration that includes delivered work. If a specific stream must use

work that has been included in a baseline in an appropriate stream, you rebase the

specific stream to the desired baseline.

In a rebase operation, a developer selects one or more baselines to add or drop

from the configuration of the stream. Just as a view can only select one version of

an element, a stream can only include one baseline for each component. If more

than one baseline were allowed in a stream foundation for a particular component,

the selection of versions in that component would be ambiguous.

During a rebase operation, the specified baselines replace the current baselines, if

any, for their components. Changes that have been made on the stream are merged

into new versions, if necessary. A deliver operation always involves merging

elements. A rebase operation only involves merging if elements that have been

modified in the stream also have new versions selected by the new baseline.

Directions of rebase operations

The relationship between the old baseline and the new baseline for a component

defines the direction of the rebase operation. If the new baseline is a descendant of

the old baseline, the rebase operation advances. That is, the stream is configured

with work done in other streams from the same starting point.

Conversely, if the new baseline is an ancestor of the old baseline, the rebase

operation is said to revert. That is, the stream moves back to an earlier baseline.

However, if two baselines share an ancestor, but both contain significant

development work or if the relationship between the baselines cannot be

established, the rebase operation is lateral. A lateral rebase operation is typically

used to configure a new version of a read-only component, for example, a

compiler.

A single rebase operation might involve many baselines; the rebase direction is

determined on each baseline in the rebase operation. Thus, in one rebase operation,

a stream might advance for one component, revert for another component, rebase

laterally for a third component, and leave a fourth component unchanged.

20 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Advance rebase operations

Most development streams over the life of a project advance from predecessor

baselines to descendant baselines that integrate work performed in the project.

Streams are usually allowed to advance (see Figure 8).

Development streams D1 and D2 deliver work (activities a1, a2, a3, b1, b2, and b3)

to the integration stream. In the integration stream, a descendant baseline PA.BL2

is made to capture the work. To include the new work in their configurations,

streams D1 and D2 rebase to descendant baseline PA.BL2.

Restrictions on advancing rebase operations occur when the descendant baseline is

not from the parent stream. In a rebase operation, you can select a baseline from

any stream. For example, you can select a baseline from a stream that is a

descendant of the stream foundation that is in a stream that is not its parent

stream. Thus, a development stream could rebase to a baseline created in a sibling

development stream. Therefore, the rebasing stream could acquire work that has

not been delivered to the parent stream. If several streams were allowed to deliver

the same work, there would be confusion during the merge operation. (Alternative

target delivery is a special case, and a project manager can set policies to allow a

stream to accept changes that did not originate in the delivering stream).

A common example of an advance rebase operation occurs when a project uses a

test stream (see Figure 9). The project integrator creates the baseline PA.BL1 for a

milestone. The work to stabilize the code in the baseline is done on the test stream

DS that is dedicated to this task. Because the project A integration stream can have

more activities delivered as the baseline PA.BL1 is being tested, the integration

stream is not used. The test stream is isolated from deliver operations ongoing in

the parent stream, the project A integration stream.

PA.BL1

PA.BL1 PA.BL1

Integration stream

Project A

a1, a2, a3

Deliver operation

Rebase operation

b1, b2, b3

PA.BL2

D1 D2

Figure 8. Advance rebase operation

Chapter 2. Understanding UCM 21

Although the PA.BL1.S baseline is a descendant of their current foundation

baseline PA.BL0, development streams like D1 are not allowed to rebase to it. If

this rebase operation were allowed, the development streams could deliver the

build stabilization work before stream DS does. Therefore, the test stream DS must

first deliver its work in the baseline PA.BL1.S to the parent of the development

streams, the project A integration stream. When the work from test stream DS is

contained in the parent stream and the baseline that contains that work is ready to

be released, the project integrator can recommend the baseline. Then the

development streams can rebase to the baseline PA.BL1.S from the test stream.

Tip:: The deliver operation changes the relationship between baselines in a stream.

In Figure 9, when a new baseline PA.BL2 is created in the project A

integration stream, it becomes a descendant of PA.BL1 as with any baseline,

but it also becomes a descendant of PA.BL1.S from the test stream. Because

baseline PA.BL1.S was delivered to the integration stream, baseline PA.BL2

contains baseline PA.BL1.S, which is a requirement of the predecessor and

descendant relationship.

Revert rebase operations

A revert rebase operation is used when a stream needs to remove some unwanted

changes. If a baseline has some serious problems and there are no changes in the

component in the context of that stream, a stream can revert to an ancestor

baseline of that component involved in the unwanted baseline. The merge

algorithm cannot remove the unwanted changes.

If developers need to use a questionable baseline, have them use it in a read-only

stream. If a stream that has made changes needs to revert, the developer has to

explicitly remove the new versions before rebasing. A read-only stream is

guaranteed to have no changes. If developers encounter difficulty with the

questionable baseline, in read-only streams they can always revert to a stable

ancestor baseline.

PA.BL0

PA.BL1

PA.BL0

Integration stream

Project A

a1, a2, a3

Deliver operation

Rebase operation

PA.BL3

PA.BL2

D1.BL1

PA.BL1.S

PA.BL1

DS
(test stream)

D1

Figure 9. A test stream to stabilize a baseline

22 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Lateral rebase operations

A lateral rebase operation occurs when the baseline to which the stream rebases

and the baseline in the stream being rebased have no relationship to each other or

if the relationship between the baselines is too distant for merging. For example,

rebasing to an imported baseline is usually a lateral rebase operation, except when

the imported baseline is the ancestor of the current baseline. (This condition makes

a revert rebase operation.) Imported baselines have no predecessors; therefore, they

are related only to their descendant baselines.

A lateral rebase operation is typically used in a project that has vendor software,

for example, a set of compilers or other tools. The project does no development on

these tools, but it frequently receives a new release of the tools. The new release is

added to source control in a VOB, certified, and, if it passes, labeled. The label is

then imported into a baseline; rebasing to this imported baseline is a lateral rebase

operation.

Summary of rules for rebasing a stream

This section summarizes the rules for rebase operations. You can rebase a stream to

a baseline that meets any of the following criteria:

v The baseline is not from the stream that is being rebased.

v The baseline is labeled. (Baselines created by deliver operations are not labeled

by default. You can change the labeling status of a baseline.)

Additional rules apply to integration streams and development streams in selecting

a baseline. The following are general rules that apply to all types of rebase

operations:

v An integration stream can be rebased only to a baseline that is created in

another project or to an imported or initial baseline of that project.

v A development stream can be rebased to a baseline that meets one of the

following criteria:

– The baseline was created in its parent stream.

– The baseline is in the foundation set of its parent stream.

– The baseline is an ancestor of the foundation baseline of the parent of the

development stream and was created on the same stream as the foundation

baseline of the parent stream.

– The baseline was created in a stream other than its parent stream and is

contained in its parent stream. (A baseline is contained in another baseline if

all changes in the first baseline are included in the second baseline.)

You need to satisfy only the general rules if you are adding a component to a

stream.

Note: Read-Only streams and nonmodifiable components in a development stream

are exempt from the general rules. However, if the modifiability of the

component changes in the future, the development stream might not be able

to modify the component at the baseline with which it is configured. The

development stream might be able to modify the component at the baseline

it is configured with if the baseline is contained in its parent stream for this

component. Otherwise, it may not until the baseline is rebased to a

compatible baseline for that component.

Rebase typically advances the configuration of a stream, that is, it replaces the

current foundation baselines of the stream with more recent ones (see “Advance

rebase operations” on page 21). However, under certain conditions, rebase can be

Chapter 2. Understanding UCM 23

used to revert a baseline (see “Revert rebase operations” on page 22); to add or

drop a component in the configuration of a stream; and to switch to a baseline that

is neither an ancestor nor a descendant of the current foundation (see “Lateral

rebase operations” on page 23). When you advance, revert, drop, or switch a

baseline, you need to satisfy the general rules and the following additional ones:

v To advance the configuration of a stream, the new baseline must contain the

current foundation baseline.

v To revert or drop a baseline for a component in a stream, one of the following

conditions must be met:

– The component is nonmodifiable.

– The component is modifiable but has not been modified in the stream, and

the component is not in the configuration of any child streams.
v To switch to a baseline that is neither an ancestor nor a descendant of the

current foundation, one of the following conditions must be met:

– The component is nonmodifiable.

– The component is modifiable but has not been modified in the stream, and

the component is not in the configuration of any child streams.

– The component has been modified, but the new baseline contains the current

foundation baseline; and the component is not in the configuration of any

child streams.

These rules ensure that any changes made in a stream are not lost when the

configuration changes.

Recommending the baseline

 As work on your project progresses and the quality and stability of the

components improve, change the baseline promotion level attribute to reflect

important milestones (see Figure 10).

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

24 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The promotion level attribute typically indicates a level of testing. For example,

Figure 10 shows the evolution of baselines through three levels of testing; the BL8

baseline is ready for production.

Recommended baselines

When baselines pass the level of testing required to be considered stable, make

them the recommended set of baselines. Developers then rebase their development

streams to the recommended baselines. You can set a policy that requires

developers to rebase their development streams to the set of recommended

baselines before they deliver work. This policy helps to ensure that developers

update their work areas whenever a baseline passes an acceptable level of testing.

Every stream has foundation baselines. The foundation baselines of an integration

stream are its default recommended baselines. A development stream has no

default recommended baselines.

A stream can recommend a baseline if certain rules are true. These rules establish

consistency in child streams. If a child stream rebases to the new recommended

baseline and subsequently delivers activities to its default target, only activities

created on the development stream need to be delivered. The rules also prevent a

stream from reverting to the configuration of a development stream that has

rebased to baselines that are ahead of the current recommended baselines.

System
tested

BL3

Integration
tested

BL1

Production
Bl8

Acceptance
tested

BL6

Figure 10. Promoting baselines

Chapter 2. Understanding UCM 25

For more information about recommending baselines, see “Recommending the

baseline” on page 118.

Monitoring project status

 Several tools are provided to help you track the progress of your project:

v The UCM integration with Rational ClearQuest includes some Rational

ClearQuest queries, which you can use to retrieve information about activities in

your project. For example, you can see all activities that are in an active state or

all active activities assigned to a particular developer. In addition, you can create

customized Rational ClearQuest queries.

v The Compare Baselines GUI compares any two baselines of a component and

displays the differences in activities and versions associated with each baseline.

You can use this feature to determine when a particular feature was included in

a baseline.

v The Component Tree Browser (Windows only) displays the baseline history of a

component. The GUI includes a feature that lets you filter the display so that

you see only specified streams or baselines at or above a specified promotion

level.

v The Rational ClearCase Report Builder and Report Viewer (Windows only) let

you generate and view reports specific to your project environment. The Report

Builder provides a set of reports organized by Rational ClearCase object, such as

project, stream, element, and view. In addition, you can customize the

procedures used to generate and display reports.

For more information about using these tools, see “Monitoring project status” on

page 122.

Overview of the UCM integration with Rational ClearQuest

This section describes the following concepts related to the UCM integration with

Rational ClearQuest.

v “Associating UCM and Rational ClearQuest objects”

v “Schema enabled for UCM” on page 28

v “State types” on page 28

v “Queries in a Rational ClearQuest schema enabled for UCM” on page 28

Associating UCM and Rational ClearQuest objects

Setting up the UCM integration with Rational ClearQuest links UCM and Rational

ClearQuest objects (see Figure 11).

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

26 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The links between the project and activity objects in the PVOB and the record

objects in the Rational ClearQuest user database show the bidirectional linking of

these objects. When you enable a project to link to a Rational ClearQuest user

database, the integration stores a reference to that database in the project’s PVOB.

Every project that is enabled for Rational ClearQuest is linked to a project record of

record type UCM_Project in the Rational ClearQuest user database.

Every activity in a project that is enabled for Rational ClearQuest is linked to a

record in the database. An activity’s headline is linked to the headline field in its

corresponding Rational ClearQuest record. If you change an activity’s headline in a

Rational ClearCase repository, the integration changes the headline in the Rational

ClearQuest user database to match the new headline, and the reverse is also true.

Similar to the linking of the activity headline, an activity’s ID is linked to the ID

field in its Rational ClearQuest record.

It is possible for a Rational ClearQuest user database to contain some records that

are linked to activities and some records that are not linked. In Figure 11,

ClearQuest User Database 1 contains a record that is not linked to an activity. You

may encounter this situation if you have a Rational ClearQuest user database in

place before you adopt UCM. As you create activities, the integration creates

corresponding Rational ClearQuest records. However, any records that existed in

ClearQuest User Database 1PVOB

Project 1

Project 2

Activity 1

ClearQuest User Database 2

Figure 11. Association of UCM and Rational ClearQuest objects in integration

Chapter 2. Understanding UCM 27

that user database before you enabled it to work with UCM remain unlinked. In

addition, UCM does not link a record to an activity until a developer sets work to

that record.

Schema enabled for UCM

In Rational ClearQuest, a schema is the definition of a database. To use the

integration, you must create a new Rational ClearQuest user database or upgrade a

current Rational ClearQuest user database that is based on a schema that is

enabled for UCM. Such a schema contains certain fields, scripts, actions, and state

types. You can use predefined schemas that are enabled for UCM. You can also

enable a custom schema or another predefined schema to work with UCM. For

information about schemas enabled for UCM, see “Deciding which schema to use”

on page 59.

State types

States are used to track the progress of change requests from submission to

completion. A state represents a particular stage in this progression. Each

movement from one state to another is a state transition. The UCM integration

with Rational ClearQuest uses a particular state transition model. To implement

this model, the integration uses state types. A state type is a category of states that

UCM uses to define state transition sequences. You can define as many states as

you want, but all states in a UCM-enabled record type must be based on one of

the following state types:

v Waiting

v Ready

v Active

v Complete

Multiple states can belong to the same state type. However, you must define at

least one path of transitions between states of state types as follows: Waiting to

Ready to Active to Complete. For details on state types, see “Setting state types”

on page 78.

Queries in a Rational ClearQuest schema enabled for UCM

A UCM-enabled schema includes some Rational ClearQuest queries. When you

create or upgrade a Rational ClearQuest user database to use a UCM-enabled

schema, the UCM integration with Rational ClearQuest installs these queries in

two subfolders of the Public Queries folder in the user database workspace. These

queries make it easy for developers to see which activities are assigned to them

and for project managers to see which activities are active in a particular project.

For details on these queries, see “Querying Rational ClearQuest user databases” on

page 124.

28 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 3. Planning the project

This chapter describes the issues you need to consider in planning to use one or

more UCM projects as your configuration management environment in Rational

ClearCase. You should write a configuration management plan before you begin

creating projects and other UCM objects. After you create your plan, see Chapter 6,

“Setting up the project,” on page 85 for information on how to implement it.

Using the system architecture as the starting point

Essential to developing and maintaining high-quality software is the definition of

the system architecture. The IBM Rational Unified Process states that defining and

using a system architecture is one of the best practices to follow in developing

software. A system architecture is the highest level concept of a system in its

environment. The IBM Rational Unified Process states that a system architecture

encompasses the following:

v The significant decisions about the organization of a software system

v The selection of the structural elements and their interfaces of which the system

is composed, together with their behavior as specified in the collaboration

among those elements

v The composition of the structural and behavioral elements into progressively

larger subsystems

v The architectural style that guides this organization, these elements, and their

interfaces, their collaborations, and their composition

A well-documented system architecture improves the software development

process. It is also the ideal starting point for defining the structure of your

configuration management environment.

Mapping system architecture to components

Just as different types of blueprints represent different aspects of building

architecture (for example, floor plans, electrical wiring, and plumbing), a good

software system architecture contains different views to represent its different

aspects. The IBM Rational Unified Process defines an architectural view as a

simplified description (an abstraction) of a system from a particular perspective or

vantage point, covering particular concerns and omitting entities that are not

relevant to this perspective.

The IBM Rational Unified Process suggests using multiple architectural views. Of

these, the implementation view is most important for configuration management.

The implementation view identifies the physical files and directories that

implement the system’s logical packages, objects, or modules. For example, your

system architecture may include a licensing module. The implementation view

identifies the directories and files that make up the licensing module.

From the implementation view, you should be able to identify the set of UCM

components you need for your system. You typically develop, integrate, and

release components together. Large systems normally contain many components. A

small system may contain one component.

© Copyright IBM Corp. 1992, 2006 29

Deciding what to place under version control

In deciding what to place under version control, do not limit yourself to source

code files and directories. The power of configuration management is that you can

record a history of your project as it evolves so that you can re-create the project

quickly and easily at any point in time. These include, but are not limited to the

following:

v Source code files and directories

v Model files, such as Rational Rose files

v Libraries

v Executable files

v Interfaces

v Test scripts

v Project plans

v Compilers, other developer tools, and system header files

v System and user documentation

v Requirements documents

To record a full picture of the project, include all files and directories connected

with it.

Mapping components to projects

After mapping your system architecture to a set of components and identifying the

full set of files and directories to place under version control, you need to

determine whether to use one project or multiple projects. In general, think of a

project as the configuration management environment for a project team working

on a specific release. Team members work together to develop, integrate, test, and

release a set of related components. For many systems, all work can be done in

one project. For some systems, work must be separated into multiple projects. In

deciding how many projects to use, consider the following factors:

v Amount of integration required

v Whether you need to develop and release multiple versions of the product

concurrently

Amount of integration

Determine the relationships between the various components. Related components

that require a high degree of integration belong to the same project. By including

related components in the same project, you can build and test them together

frequently, thus avoiding the problems that can arise when you integrate

components late in the development cycle.

Need for parallel releases

If you need to develop multiple versions of your system in parallel, consider using

separate projects, one for each version. For example, your organization may need

to work on a patch release and a new release at the same time. In this situation,

both projects use mostly the same set of components. (Note that multiple projects

can modify the same set of components.) When work on the patch release project

is complete, you integrate it with the new release project.

If you anticipate that your team will develop and release numerous versions of

your system over time, you may want to create a mainline project. A mainline

project serves as a single point of integration for related projects over a period of

time.

30 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Figure 12 shows the initial set of components planned for the Transaction Builder

system. A team of 30 developers work on the system. Because a high degree of

integration between components is required, and most developers work on several

components, the project manager included all components in one project. For

information about using multiple UCM projects for your development, see “Project

uses” on page 141 and “Using a mainline project” on page 142.

Organizing components

After you map your system architecture to an initial set of components and

determine which projects will access those components, refine your plan by

performing the following tasks:

v Decide how many VOBs to use

v Identify any additional components

v Define the component directory structures

v Identify read-only components

Deciding how many VOBs to use

You can store multiple components in a VOB. If your project uses a small number

of components, you may want to use one VOB per component. However, if your

project uses many components, you may want to store multiple components in

several VOBs. A VOB can store many versions of many elements. It is inefficient to

use a VOB to store one small component.

Keep in mind the following restrictions:

v A component root directory must be at the level of or one level beneath the VOB

root directory. A component includes all directory and file elements under its

root directory. For example, in Figure 13, Libs cannot be a component.

v You cannot nest components. For example, in Figure 13, GUI, Admin, and

Reports can be components only if Dev is not a component.

Transaction Builder Project

Customer GUI Admin GUI

Admin Security

Reporting

Modeler

Figure 12. Components used by Transaction Builder project

Chapter 3. Planning the project 31

v If you make a component at the VOB root directory, that VOB can never contain

more than that one component. For this reason, create components one level

beneath the VOB root directory. Doing so allows you to add components to the

VOB in the future.

v Whether you make a component at the level of or one level beneath the VOB

root directory, the component name must be unique within its PVOB.

Identifying additional components

Although you should be able to identify nearly all necessary components by

examining your system architecture, you may overlook a few. For example:

System component

It is a good idea to designate one component for storing

system-level files. These items include project plans, requirements

documents, and system model files and other architecture

documents.

Project baseline component

If you plan to use a composite baseline that selects baselines from

all of the components of the project, store the composite baseline in

its own component. See “Identifying a project baseline” on page 46

for details.

Testing component

Consider using a separate component for storing files related to

testing the system. This component includes files such as test

scripts, test results and logs, and test documentation.

Deployment component

At the end of a development cycle, you need a separate component

to store the generated files that you plan to ship with the system or

deploy inhouse. These files include executable files, libraries,

interfaces, and user documentation.

Tools component

In addition to placing source files under version control, it is a

good idea to place your team’s developer tools, such as compilers,

and system header files under version control.

VOB

/Dev

GUI
Admin

Libs

Reports

Figure 13. Storing multiple components in a VOB

32 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Defining the directory structure

After you complete your list of components, you need to define the directory

structures within those components. You can start with a directory structure similar

to the one shown in Table 1; then modify the structure to suit your system needs.

In Table 1, Component_1 through Component_n refers to the components that map

to the set of logical packages in your system architecture.

 Table 1. Recommended directory structure for components

Component Directories Typical contents

System plans Project plans, mission statement,

and so on

requirements Requirements documents

models Rose files, other architecture

documents

documentation System documentation

Component_1 through

Component_n

requirements Component requirements

models Component model files

source Source files for this component

interfaces Component public interfaces

binaries Executable and other binary files

for this component

libraries Libraries used by this component

tests Test scripts and related

documents for this component

Test scripts Test scripts

results Test results and logs

documentation Test documentation

Deployment binaries Deployed executable files

libraries Deployed libraries

interfaces Deployed interfaces

documentation User documentation

Tools compilers Developer tools such as Rational

WorkBench, Visual .NET and IBM

Rose

headers System header files

Project baseline none Composite baseline that selects

baselines from all components in

the project

Identifying read-only components

When you create a project, you must indicate whether each component is

modifiable in the context of that project. In most cases, you make them modifiable.

However, in some cases you want to make a component read-only, which prevents

project team members from changing its elements. Components can be used in

multiple projects.

Chapter 3. Planning the project 33

One project team may be responsible for maintaining a component, and another

project team may use that component to build other components (see Figure 14).

The Project A team members maintain a set of library files in the cm_libs

component. Project B team members refer to some of those libraries when they

build their components. In Project A, the cm_libs component is modifiable. In

Project B, the same component is read-only. With respect to the cm_libs

component, Project A and Project B have a producer-consumer relationship. For

more information, see “Modifiable components” on page 63.

Because making a baseline of a component to change its members modifies the

related component, the related component that is used for a composite baseline

should be modifiable. A component without a VOB root directory (that is, one

used to make a pure composite baseline) should be modifiable except in the

following circumstances:

v The component is to hold only read-only components as members.

v No baseline is ever to be made in the component.

You cannot make a baseline of a read-only component without a VOB root

directory.

Choosing a stream strategy

UCM provides many choices in using streams.

v A multiple-stream project with one shared work area and multiple private work

areas

v A multiple-stream project with hierarchies of streams (that is, multiple shared

work areas)

v A single-stream project

v A project with read-only streams

The basic multiple-stream project

The basic UCM process uses the multiple-stream project with the integration

stream as the sole shared work area. Developers join the project by using the

integration stream recommended baselines to populate their development streams;

deliver completed work to the integration stream where the integrator incorporates

the work into new baselines; and rebase their development streams to the new

recommended baselines. Depending on the size of your project and the number of

developers working on it, this process may be a good choice for your team.

Project A

cm_libs
modifiable

Project B

cm_libs
read-only

Figure 14. Using a read-only component

34 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Stream hierarchies

As an alternative to using the integration stream as the sole shared work area for

the project, you can use the UCM development stream hierarchy feature to create

multiple shared work areas. This approach supports a project organization that

consists of small teams of developers where each team develops a specific feature

in feature-specific development streams (see Figure 15).

The project manager created a development stream called Permissions_dev for two

developers who are working on a permissions feature. The developers, Pat and

Pedro, joined the project at the Permissions_dev level rather than at the integration

stream level. They deliver completed work to the Permissions_dev stream.

Periodically, the integrator or lead developer responsible for managing the

Permissions_dev stream incorporates the delivered work into new baselines, and

the developers rebase their development streams to those new baselines.

When the two developers finish working on the permissions feature, they deliver

their last work to the Permissions_dev stream. The integrator incorporates their

delivered work into a final set of baselines and delivers those baselines to the

integration stream.

Stream configurations and baseline contents

When project managers create projects, they add components to the project and

select baselines for those components which are referred to as the foundation

baselines. If you use a composite baseline for the project, the project has one

baseline as its foundation baseline.

Optionally, a project manager can assign to a development stream a set of

foundation baselines. Foundation baselines specify a stream’s configuration by

selecting the file and directory versions that are accessible in the stream.

0

1

1

2

X

X X

Integration

Permissions dev_

Pat s dev' _ Pedro s dev' _

Figure 15. Using a feature-specific development stream

Chapter 3. Planning the project 35

The integration stream configuration

The integration stream is created with either baselines from another project or

selected baselines from the PVOB. These foundation baselines are by default the

recommended baselines of the integration stream. The recommended baselines of

the project are the integration stream’s recommended baselines.

In Figure 15, the set of foundation baselines chosen as the initial configuration of

the integration stream are represented by baseline 0. For an integration stream, all

foundation baselines must be either baselines created in other projects’ integration

streams, or be imported or initial baselines. For an integration stream, you cannot

use baselines created in development streams. This set of foundation baselines

provides a stable, well-known configuration in the project integration stream.

Development stream configurations

When a development stream is created, you can assign it a set of foundation

baselines. All foundation baselines for a development stream must be either

recommended baselines in the parent stream or baselines created in the integration

stream. If no baselines are recommended, baselines that were created in the

integration stream of the project must be used. In Figure 15, the set of foundation

baselines of the feature-specific development stream Permissions_dev is

represented by baseline 1, which were created in the parent integration stream.

When developers join a project, by default, their development streams are created

with the set of recommended baselines in the parent stream. The set of foundation

baselines of the development streams Pat’s_dev and Pedro’s_dev are represented

by baseline X, a baseline that was created in the parent stream Permissions_dev.

These configuration rules attempt to establish a common foundation whereby there

are no versions in child streams for which there is not an ancestor in the parent

stream. This establishes a consistent ancestry for change flow through deliver and

rebase operations.

A baseline does not have to be recommended for every component in the stream

configuration.

Stream relationships

The relationships among streams determines how changes can move in a project

(see Figure 16).

36 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

An integration stream has foundation baselines represented by PA.BL1 which are

also its recommended baselines. Child stream D1 has foundation baselines

represented by PA.BL1 and has recommended baselines D1.bl0 and D1.bl1. Family

terminology is used to describe where in the hierarchy a particular stream is

located.

v Streams with the same parent are called siblings. For example, in Figure 16,

streams D2a, D2b, and D2c are descendants from the same parent (stream D1).

Streams D2a and D2b use the baselines in D1.bl0 as their foundation baselines.

Stream D2c uses the baselines in D1.bl1 as its foundation baselines.

Tip: Although stream D2c uses different foundation baselines than its siblings,

all components in its siblings are also in its foundation baselines.

v The parent of a parent stream is called a grandparent. For example, in Figure 16,

the integration stream is the grandparent of streams D2a, D2b, and D2c and the

development stream D1 is the grandparent of streams D2b_1 and D2c_1.

The foundation baselines in D2b.bl0 of stream D2b_1 are the recommended

baselines in the parent stream D2b.

The foundation baselines in D2c.bl0 of stream D2c_1 are the recommended

baselines in the parent stream D2c.

v Streams whose parent streams are siblings are called cousins. For example, in

Figure 16, streams D2b_1 and D2c_1 are cousins because their parent streams

D2b and D2c are siblings.

Although the cousin streams have different foundation baselines, the baselines

are ancestors of the same foundation baselines in the grandparent stream D1.

PA.BL1

PA.BL1
D1.BL0
D1.BL1

D2b.BL0 D2c.BL0

D1.BL0

Integration stream

Stream
D1

Stream
D2a

D1.BL0
D2b.BL0

D1.BL1
D2c.BL0

Stream
D2b

Stream
D2c

Stream
D2b_1

Stream
D2c_1

Figure 16. Stream relationships

Chapter 3. Planning the project 37

Stream hierarchy and default targets

A project can have a hierarchy of development streams that starts with the

integration stream (see Figure 17).

A development stream is created as a child of either the integration stream or of

another development stream. For example, stream D1 is a child of the integration

stream, stream D2 is a child of stream D1, and D3 is a child of stream D2.

The parent-child relationship between streams defines the default target of deliver

operations and the default source of baselines for rebase operations. The default

relationships are the following:

v A child stream delivers to its default target, the parent stream, any undelivered

activities that it holds. For example:

– Stream D3 delivers activities c1, c2, and c3 to its default target, stream D2.

– Stream D2 delivers to its default target, stream D1, activities b1, b2, and b3

and the activities that have been delivered to it from its child streams.

– Stream D1 delivers to the integration stream activities a1, a2, and a3 plus the

activities that are delivered to it from its child streams.

PA.BL1

PA.BL1

D1.BL0

Integration stream

Project A

b1, b2, b3

a1, a2, a3

Deliver operation

Rebase operation

PA.BL2

D1.BL0

D1.BL1

PA.BL2

D2.BL1

D1.BL1

D2.BL0

D1

D2

D2.BL0

c1, c2, c3

D2.BL1

D3

Figure 17. Stream hierarchy with multiple levels

38 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v A child stream rebases to baselines in the parent stream to receive activities that

were delivered by other development streams. Typically, these change sets are in

recommended baselines. For example:

– Stream D3 rebases to recommended baselines in stream D2.

– Stream D2 rebases to recommended baselines in stream D1.

– Stream D1 rebases to recommended baselines in the integration stream.

Although the integration stream is a child of the project, it does not have a default

relationship. If the project manager wants the integration stream to have a default

relationship, an integration stream in another project can be specified as the default

target of deliver operations and the source of recommended baselines to be used

for rebase operations.

Alternate targets

All streams in the same project can deliver activities to streams other than the

default target. Such alternate target streams are restricted by the foundation

baselines in the source stream and the target stream.

A policy in the project controls whether streams can control access (see “Policies

for deliver operations to nondefault targets” on page 66). Policies in the streams

control stream access. A stream cannot be the target of a deliver operation if the

project or stream policy prohibits access. One policy determines whether a stream

can accept activities in a deliver operation from a stream in a different project.

Alternate targets in the same project

Within the same project, streams that share foundation baselines can share changes

(see Figure 18).

Streams that share the same foundation baselines have a direct relationship and

can share changes by using alternate target deliver operations. For example, child

streams D2b and D2c share as their foundation baselines the recommended

baselines in D1.bl0 from parent stream D1. All the elements that are in the

foundation baselines of streams D2b and D2c are in the foundation baselines of the

child stream D2a.

PA.BL1

D1.BL1

D2a.BL1

D1

D2a.BL1

D1.BL0

D1.BL1

D2a

D1

D1.BL0 D1.BL0

D2b.BL1

D2b D2c

D2b_1

Figure 18. Direct stream relationships for alternate target deliver operations

Chapter 3. Planning the project 39

Using an alternate target deliver operation, you can migrate activities to a sibling

stream or to a stream related to a sibling stream rather than to a parent stream.

Delivering activities to any stream other than the parent stream can also include

other activities from the foundation baselines of the source stream. What changes

are migrated depends on the relationship of the foundation baselines of the source

stream relative to the target stream. For example, in a deliver operation from

stream D2b to D2c, from stream D2c to D2b, or from stream D2b_1 to D2c,

because the foundation baselines are the same, only the changes in the source

stream are migrated.

Some alternate target deliver operations can be forward. This involves delivering

activities to a sibling stream that has an advanced baseline or has newer

foundation baselines. For example, in Figure 18, migrating changes from stream

D2b to D2a involves a forward deliver operation. Because all changes in

foundation baselines of stream D2b are in those of D2a, only the activities that are

in stream D2b are delivered.

However, alternate target deliver operations typically migrate more changes than

you at first might anticipate. The alternate target deliver operation can also be

backward. This involves delivering activities to a sibling stream that has not rebased

to the newer, recommended baselines. For example, in Figure 18, migrating

changes from stream D2a to D2b involves a backward deliver operation. Because

the target stream D2b does not have all the changes that the source stream D2a

has, the operation additionally migrates to stream D2b activities from baseline

D2a.bl1 in stream D2a.

Some alternate target deliver operations involve indirect baseline relationships (see

Figure 19).

A stream can migrate its changes to a stream that has an indirect relationship. The

deliver operation often includes activities from the foundation baselines of the

source stream. The following are examples.

v From the child of one stream to the child of a sibling stream (cousin to cousin).

For example, a deliver operation from stream D2b_1 to D2a_1 includes activities

contained in baseline D2b.bl1.

PA.BL1

D1.BL1

D2a.BL1

D1

D2a.BL1

D1.BL0

D1.BL1

D2a

D1

D1.BL0 D1.BL0

D2b.BL1

D2b.BL1

D2b D2c

D2b_1

Figure 19. Indirect stream relationships for alternate target deliver operations

40 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v From a grandchild to a grandparent stream or to another direct ancestor.

For example, a deliver operation from stream D2a_1 to D1 includes activities

contained in baseline D2a.bl1.

A deliver operation from stream D2b_1 to stream D1 includes activities

contained in baseline D2b.bl1.

Coordinating development streams in the same project

The developers in a project can use an alternate-target deliver operation between

sibling streams in the same project to coordinate work between them (see

Figure 20).

Two developers in project A work on different portions of a feature in their own

streams D1 and D2, which are siblings. The two developers need to integrate their

work before it is delivered to the integration stream. No other interaction is

needed.

The developer using stream D2 uses an alternate target deliver operation to

migrate the changes in activities b1, b2, and b3 to the sibling stream D1. The

developer in stream D1 tests the work and delivers all the activities to the default

deliver target, the project A integration stream. This configuration works well

where a low level of isolation is necessary.

Sharing changes by a rebase operation

Sharing by a rebase operation allows a stream to configure work done in a sibling

stream (Figure 21).

PA.BL1

PA.BL1 PA.BL1

Integration stream

Project A

b1, b2, b3a1, a2, a3

Deliver operation

PA.BL2

D2.BL0

D1.BL1

D1.BL0

D2D1

Figure 20. Alternate target intra-project deliver operation

Chapter 3. Planning the project 41

Typically, stream D1 cannot rebase to baselines from stream D2 because they do

not meet the requirement that the baselines must be contained in the parent

stream. If you deliver to the parent stream the activities in a baseline in one

stream, a sibling stream can be configured with those changes. In Figure 21, if the

baseline D2.BL1 is first delivered to the parent stream (the project integration

stream in this example), you can rebase stream D1 to the baselines in D2.BL1 in

the sibling stream D2. Delivering to the parent stream ensures that, in a default

target deliver operation, only activities that originated in stream D1 are delivered

in baselines D1.bl1 to the parent stream.

Sharing by a rebase operation in this manner requires integration one level higher

than the stream in which the changes originated.

Sharing changes by a deliver operation

Sharing can be done with deliver operations between siblings in the same project

(see Figure 22).

PA.BL0

PA.BL1

PA.BL0

Integration stream

Project A

a1, a2, a3

b1, b2, b3

Deliver operation

Rebase operation

PA.BL2

PA.BL2

D1.BL1

D2.BL1

PA.BL1
Stream D2

Stream D1

Figure 21. Sharing changes by a rebase operation

42 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

If you integrate changes in a sibling stream (rather than in a parent stream; see

“Sharing changes by a rebase operation” on page 41), you can use an alternate

target deliver operation to share changes between sibling streams. For example, if

you deliver activities b1, b2, and b3 in stream D2 to stream D1, you must also

deliver activities in baselines in PA.BL1 and merge the changes with the versions

in activities a1, a2, and a3. This complex deliver operation can be simplified by

using a rebase operation before the alternate target deliver operation (see “Simplify

a deliver operation with a rebase operation” on page 43).

All of the integrated changes are migrated to the parent stream (the project

integration stream) when you deliver your work from stream D1.

Simplify a deliver operation with a rebase operation

A rebase operation can simplify an alternate-target deliver operation when a

sibling stream needs to configure changes from a related stream (see Figure 23).

PA.BL0

PA.BL1

PA.BL0

Integration stream

Project A

a1, a2, a3

b1, b2, b3

Deliver operation

PA.BL2

D1.BL1

D2.BL1

PA.BL1
Stream D2

Stream D1

Figure 22. Sharing changes by an alternate target deliver operation

Chapter 3. Planning the project 43

Because streams D1 and D2 are siblings, stream D2 can deliver its activities to

stream D1. However, stream D2 contains changes in it foundation baselines that

are not in stream D1. If stream D2 were to deliver activities a1, a2, and a3 to

stream D1, all the additional activities in baselines in PA.BL2 would have to be

delivered also.

However, if you rebase stream D1 to the baselines in PA.BL2 in the common

parent stream before delivering the activities in stream D2, this complex alternate

target deliver operation can be simplified. During the rebase operation, the changes

in activities b1, b2, and b3 are preserved. After the rebase operation, no activities

other than a1, a2, and a3 have to be delivered from stream D2 to D1.

Single-stream projects

For most customers, a parallel development environment consisting of private and

shared work areas makes sense. However, small teams of developers working

together closely may prefer a serial development environment. UCM supports this

by letting you create a single-stream project. A single-stream project contains one

stream, the integration stream, and does not allow users to create development

streams. When developers join a single-stream project, they create a view attached

to the integration stream.

You may want to use a single-stream project during the initial stage of

development when several developers want to share code quickly. When the

development effort expands and you need a parallel development environment,

you can create a multiple-stream project based on the final baselines in the

single-stream project.

The following are the main advantages of single-stream projects:

v Developers who work in dynamic views see each other’s work as soon as they

check in their files. Developers who work in snapshot views see each other’s

work as soon as they check in their files and update their views. In a

multiple-stream project, developers see each other’s changes only during deliver

and rebase operations.

v Developers have a simplified work environment. Because all work is done on

the integration stream, developers do not need to maintain a development

PA.BL1

PA.BL2

PA.BL1

Integration

Project A

b1, b2, b3

a1, a2, a3

Deliver operation

Rebase operation

D1.BL0

D2.BL0

PA.BL2

D2

D1

Figure 23. Rebase operation and alternate target deliver operation

44 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

stream and two views, one attached to the development stream and one

attached to the integration stream. In addition, developers do not need to

perform deliver or rebase operations.

v Your role as integrator is simplified. Because developers work on the same

stream and see each other’s changes immediately, you do not need to create

baselines frequently. In contrast to a multiple-stream project, developers do not

depend on baselines to integrate their work. The primary purpose of baselines in

a single-stream project is to identify major milestones.

The following are the main disadvantages of single-stream projects:

v Developers have limited support for sharing files simultaneously. Although

multiple developers can check out an element in the same stream at the same

time, only one developer can reserve the checkout. A reserved checkout guarantees

the developer’s right to check in a new version of the element. All other

developers must check out the element as unreserved, which means that they

cannot check in their versions until after the reserved checkout has been checked

in or canceled. Developers with unreserved checkouts must merge their changes

with the changes made by the reserved checkout.

v Because changes are shared as soon as developers check in their files, developers

assume the full responsibility for testing their work and must be extremely

vigilant to ensure that they do not introduce bugs to the project. In contrast, a

multiple-stream project allows the integrator or a software quality engineering

team to perform extensive testing of new baselines on a dedicated testing stream

and to recommend baselines only after they pass those tests.

v Because changes are shared as soon as developers check in their files, developers

might keep files checked out longer than they would in a multiple-stream

project. If a view is lost, all changes made but not checked in that view are also

lost. Therefore, have your Rational ClearCase administrator frequently back up

views for single-stream projects.

Read-only streams

During the evolution of a project, you might need to provide some users with

access to baselines while ensuring that they do not make any changes to

components. You can address this requirement by creating a Read-Only

development stream for those users. You cannot make baselines in Read-Only

streams, nor can you create child streams beneath them. You can create view-private

files, such as derived objects in Read-Only streams.

Common use cases for Read-Only streams include the following:

v Your quality engineering team needs to build and test a particular configuration.

v Your customer support team needs access to a library that was built in a

previous release.

v Your release engineering team needs to create a release based on a combination

of old and new baselines.

Specifying a baseline strategy

After you organize the project’s components, determine your strategy for creating

baselines of those components. The baseline strategy must define the following

aspects of projects:

v A project baseline (see “Identifying a project baseline” on page 46)

v The use of pure composite baselines (see “Pure composite baselines” on page 47)

v When to create baselines (see “When to create baselines” on page 51)

Chapter 3. Planning the project 45

v How to name baselines (see “Defining a baseline naming convention” on page

52)

v The set of promotion levels (see “Identifying promotion levels to reflect state of

development” on page 52)

v How to test baselines (see “Planning how to test baselines” on page 52)

Identifying a project baseline

In your role as project integrator, you are responsible for telling developers which

baselines to use when they join the project and when they rebase their

development streams. You could keep track of a list of baselines, one for each

component. However, a more efficient practice is to use a composite baseline to

represent the project baseline (see Figure 24).

Project A uses a composite baseline, PA, to select baselines in the GUI and Admin

components. Project B also uses a composite baseline, PB. Baselines that are

selected by a composite baseline are referred to as members. A composite baseline is

said to depend on the member baseline.

After you create a composite baseline to represent the project baseline, the next

time you invoke the make baseline operation on the component that contains the

project baseline, UCM performs the operation recursively. If a component that

contributes to the composite baseline has changed since its latest baseline, UCM

creates a new baseline in that component. For example, assume that developers

made changes to files in the GUI component after the integrator created the 1

baseline. The next time you make a new project baseline, UCM creates a new

GUI Admin

ProjA_Comp

Project X

System component

SB

PA

1 2

Libs Core

ProjB_Comp

Project BProject A

PB

9 6

Figure 24. Using a system-level composite baseline

46 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

baseline in the GUI component that incorporates the changed files, and the new

project baseline selects the new GUI baseline.

A composite baseline can select other composite baselines. Thus, member baselines

may themselves be composite baselines. The chain of dependencies forms an

acyclic directed graph, with no limit on the depth of the membership. Composite

baselines do not necessarily have to model any source or build dependencies.

For example, if your system is so large that it consists of multiple projects, you

may want to use a composite baseline to represent the system baseline. In

Figure 24, SB is a composite baseline that selects the PA and PB baselines of

Project A and Project B, respectively.

In addition to using a composite baseline to represent the project, you can use

multiple composite baselines within the same project. When working with multiple

composite baselines, you can encounter situations where two composite baselines

select different baselines of the same component. When this happens, you need to

resolve the conflict by choosing one of the member baselines. To avoid these

conflicts, choose a simple baseline design, rather than one that uses a complex

hierarchy of composite baselines. For information about baseline conflicts, see

“Resolving baseline conflicts” on page 120.

Pure composite baselines

Like all baselines, a composite baseline must belong to a component. However,

that component does not need to contain any of its own elements. For example, in

Figure 24, the System component, ProjA_Comp, and ProjB_Comp components

consist only of their composite baselines. When you create a component to be used

solely for housing a composite baseline, you can specify an option that directs

UCM to make the component without creating a root directory in a VOB. Such a

component can never contain its own elements and its baseline is referred to as a

pure composite baseline.

Dependency relationships in pure composite baselines

A pure composite baseline shows a loosely coupled dependency relationship

between components (see Figure 25).

The objects A.BL1 and C.BL1 are baselines on components A and C that are used

to group directory and file elements. Baselines A.BL1 and C.BL1 are members of

the composite baseline X.BL1 on the component X that was created without a root

directory in a VOB. Baseline X.BL1 directly depends on baselines A.BL1 and

C.BL1. However, the dependency between A.BL1 and C.BL1 is incompletely

expressed. The components have to be used together, but it is not clear whether

component A depends on C or component C depends on A.

X.BL1

A.BL1 C.BL3

Figure 25. Loosely coupled relationship between baselines

Chapter 3. Planning the project 47

You cannot change the existing dependency relationships in a composite baseline.

To change dependency relationships, you must create a new baseline, a descendant

of the changing baseline. For the composite baseline, you can add dependency

references to new components (to create a new dependency relationship) or can

drop dependency references to existing components (to discontinue a dependency

relationship). For either operation, a new composite baseline is created.

At any time, a composite baseline can have member baselines added or dropped.

Although it appears that components are manipulated to create composite

baselines, the dependency relationship is made between baselines and not

components. One might say that some components are dependant on other

components, but the dependency relationships have a limited scope. The

dependency relationship may last for the life of a particular project, but it might be

different for other projects. The dependency relationships change over time as

components are added or dropped. So the relationship must be made between

versions of components, the baselines, rather than between the components

themselves.

Because a component without a VOB root directory has no elements (and,

therefore, no associated code), a new composite baseline created on such a

component can only indicate changes in the dependency relationship. A composite

baseline on a such a component is an aggregation of baselines.

When you use a pure composite baseline, a new baseline on component X only

means that there was some change in the membership of the baseline. Using a

pure composite baseline provides greater configuration flexibility than using a

composite baseline on a component that has a root directory in a VOB. Use pure

composite baselines whenever possible when you configure composite baselines.

Dependency relationships in composite baselines of ordinary

components

In a composite baseline of a component that has a root directory in a VOB (an

ordinary component), a tightly coupled relationship exists between components as

shown in Figure 26.

A.BL1 is a baseline on component A that groups directory and file elements and is

also a composite baseline that selects baseline C.BL3 of component C. Baseline

C.BL3 is a member of composite baseline A.BL1. Composite baseline A.BL1

depends on the member baseline C.BL3.

A change to the baseline in component A could be caused by a change in the

configuration of component A (that is, a member being added or dropped) or by a

new baseline in component C. This type of component arrangement is tightly

coupled, for example, if code in component A depends on code in component C.

A.BL1

C.BL3

Figure 26. Tightly coupled relationship between baselines

48 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

In the tightly coupled relationship, the composite baseline A.BL1 fulfills two roles:

selecting baselines from other components and identifying a set of versions in its

component. Determining the reason for making a new descendant of this type of

composite baseline is expensive (in terms of performance). Using a composite

baseline that has tightly coupled relationships imposes configuration restrictions.

For example, you may only be able to do an advanced rebase operation.

Making a new descendant baseline

Making a new descendant for a pure composite baseline indicates that the

relationship between member baselines has changed. The loosely coupled

relationship in a pure composite baseline (see Figure 25) indicates that the project

integrator manages the dependency among the components outside of the Rational

ClearCase environment. This form of dependence provides more choices of

baselines to use in a project. Because the dependency relationship does not enforce

the changing of component A if component C changes, the project integrator must

be more careful in selecting baselines but has more flexibility in making changes.

Making a new descendant for a composite baseline of an ordinary component

when the predecessor baseline changes can indicate one or both of the following

meanings:

v Changes in the baseline dependency relationships

v Changes in the elements that make up the components

In a tightly coupled dependence (see Figure 26), a change in component C enforces

changing component A.

Whether to use pure composite baselines

Many projects or project organizations need the flexibility provided by using pure

composite baselines. Pure composite baselines are better in the following situations:

v If baseline conflicts occur.

v The project needs a lateral rebase operation to configure baselines from outside

the project.

However, a project that does not include overlapping composite baselines will not

have conflicts. Also, in development teams where projects are release-oriented, a

project is likely to only need baselines from the previous project, and so the rebase

flexibility is not needed.

To avoid using pure composite baselines, a project integrator can ensure that the

subsystems stay synchronized with the shared components. When a new baseline

is created on a shared component, all consuming projects would release a new

baseline for their subsystem based on the new baseline. This frequent updating

and rebasing prevent baseline conflicts. Such overhead is likely to be feasible only

for projects with a small number of shared components.

Changing to a pure composite baseline

If a project has a composite baseline on an ordinary component, you can change

the project to use a pure composite baseline (see Figure 27).

Chapter 3. Planning the project 49

The project manager can create a component without a VOB root directory for each

component that has a composite baseline and contains elements. For example,

composite baseline LIB.BL1 is for a component that has its own elements. The

project manager drops the dependency references to components C and A from

baseline LIB.BL1. The project manager creates a new component LIB_NR that does

not have a root directory. Then a new composite baseline LIB_NR0 can be made

based on the rootless component. And you can add dependencies on the baseline

LIB.BL1 of the original component and on baselines C.BL3 and A.BL1 of the other

components.

Creation of composite baseline descendants

If you introduce changes in a member component in a composite baseline, related

baselines must be updated. The following are reasons to create a new baseline:

v Changes in the component since the last baseline was created

v Changes to the dependencies (a member is added or dropped)

v Replacement of member baselines by different baselines on the component

A change in one of the dependencies is propagated up to the root as new baselines

are created to include the new member baselines. For example, there are changes

in component C, and a new baseline is created on component A (see Figure 28).

When you create a new baseline on component A, the work done on component C

causes a new baseline, C.BL4, to be created to capture the changes. Because

baseline C.BL3 was replaced by C.BL4, and baseline C.BL3 was a member of

composite baseline B.BL1, a new baseline, B.BL2, on component B is made to

record the relationship with baseline C.BL4. Because baseline B.BL1 was replaced

by baseline B.BL2, a new baseline A.BL2 on component A is needed.

LIB.BL1

C.BL3 A.BL1

LIB_NR0

LIB.BL1 C.BL3 A.BL1

Figure 27. Changing a regular composite to a pure composite baseline

B.BL1

A.BL1

C.BL3 D.BL1

B.BL2

A.BL2

C.BL4 D.BL1

c1, c2, c3

Figure 28. Creation of a composite baseline descendant

50 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Unless you explicitly add dependencies to a composite baseline or drop

dependencies from a composite baseline, when a baseline is created following on a

composite baseline, the new baseline inherits the members of its predecessors.

When a new descendant baseline is created, all dependencies of the composite

baselines are checked and new baselines are created as needed.

A new baseline need only be created for the composite baseline, not for any

member baselines of unchanged components. Unless a new baseline is needed for

a project that is not using the composite baseline, you should not have to create a

new baseline for component D. Baseline B.BL2 inherits baseline D.BL1 unchanged.

A new baseline for component D would not be a member of the composite

baseline B.BL2.

When to create baselines

At the beginning of a project, you must identify the baseline or baselines that

represent the starting point for new development. As work on the project

progresses, you need to create new baselines periodically.

Identifying the initial baseline

If your project represents a new version of an existing project, you probably want

to start work from the latest recommended baselines of the existing components of

the project. For example, if you are starting work on version 3.2 of the Transaction

Builder project, identify the baselines that represent the released, or production,

versions of its version 3.1 components. A convenient way to start a project with

stable versions of components is to use a bootstrap project (see “Bootstrap projects”

on page 146).

If you use pure composite baselines, create a bootstrap project with the initial

baselines. Then, create your ongoing projects and configure them with the pure

composite baselines from that bootstrap project.

If you are converting a base ClearCase configuration to a project, you can make

baselines from existing labeled versions. Check whether the latest stable versions

are labeled. If they are not, you need to create and apply the label type to the

versions that you plan to include in your project. See “Making a baseline from a

label” on page 98 for information about creating and applying a label type to

versions.

Ongoing baselines

After developers start working on their streams in the new project and make

changes, create baselines on the integration stream and on any feature-specific

development streams on a frequent (nightly or weekly) basis. This practice has

several benefits:

v Developers stay in sync with each other’s work.

It is critical to good configuration management that developers have private

work areas where they can work on a set of files in isolation. Yet extended

periods of isolation can cause problems. Developers are unaware of each other’s

work until you incorporate delivered changes into a new baseline, and they

rebase their development streams.

v The amount of time required to merge versions is minimized.

When developers rebase their development streams, they may need to resolve

merge conflicts between files that the new baseline selects and the work in their

private work areas. When you create baselines frequently, they contain fewer

changes, and developers spend less time merging versions.

Chapter 3. Planning the project 51

v Integration problems are identified early.

When you create a baseline, you first build and test the project by incorporating

the work delivered since the last baseline. By creating baselines frequently, you

have more opportunities to discover any serious problems that a developer may

introduce to the project inadvertently. By identifying a serious problem early,

you can localize it and minimize the amount of work required to fix the

problem.

If you are working in a single-stream project, you do not need to create baselines

frequently. Developers see each other’s changes as soon as they check in files; they

do not rebase to the latest recommended baselines. The primary purpose of

baselines in a single-stream project is to identify major project milestones, such as

the end of an iteration or a beta release.

Defining a baseline naming convention

Because baselines are an important tool for managing a project, define a

meaningful convention for naming them. You may want to include some or all of

the following information in a baseline name:

v Project name

v Milestone or phase of development schedule

v Date created

For example: V4.0TRANS_BL2_June12.

UCM includes a set of templates that you can use to implement a baseline naming

convention within a project. See “Setting a baseline naming template” on page 92

for details.

Identifying promotion levels to reflect state of development

A promotion level is an attribute of a baseline that you can use to indicate the

quality or stability of the baseline. The following default promotion levels are

provided:

v Rejected

v Initial

v Built

v Tested

v Released

You can use some or all of the default promotion levels, and you can define your

own. The levels are ordered to reflect a progression from lowest to highest quality.

You can use promotion levels to help you recommend baselines to developers. The

Recommended Baselines window displays baselines that have a promotion level

equal to or higher than the one you specify. You can use this feature to filter the

list of baselines displayed in the window. Determine the set of promotion levels for

your project and the criteria for setting each level.

Planning how to test baselines

Typically, software development teams perform several levels of testing. An initial

test, known as a validation test, checks to see that the software builds without

errors and appears to work as it should. A more comprehensive type of testing,

such as regression testing, takes much longer and is usually performed by a team

of software quality engineers.

52 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

When you make a new baseline, you need to lock the integration stream to prevent

developers from delivering additional changes. This allows you to build and test a

static set of files. Because validation tests are not exhaustive, you probably do not

need to lock the integration stream for a long time. However, more extensive

testing requires substantially more time.

Keeping the integration stream locked for a long time is not a good practice

because it prevents developers from delivering completed work. One solution to

this problem is to create a development stream to be used solely for extensive

testing. After you create a new baseline that passes a validation test, your testing

team can rebase the designated testing development stream to the new baseline.

When the baseline passes the next level of testing, promote it. When you are

confident that the baseline is stable, make it the recommended baseline so that

developers can rebase their development streams to it.

For information on creating a testing development stream, see “Creating a

development stream for testing baselines” on page 106. For information on testing

baselines, see “Testing the baseline” on page 116.

Planning PVOBs

UCM objects such as projects, streams, activities, and change sets are stored in

project VOBs (PVOBs). PVOBs can also function as administrative VOBs. You need

to decide how many PVOBs to use for your system and whether to take advantage

of the administrative capabilities of the PVOB.

Deciding how many PVOBs to use

Product Note: This section does not apply to Rational ClearCase LT because that

product allows for only one PVOB per server.

Projects that use the same PVOB have access to the same set of components. If

developers on different projects need to work on some of the same components,

use one PVOB for those projects. For example, Figure 29 shows concurrent

development of two versions of the Webotrans product. While most members of

the team work on the 4.0 release in one project, a small group works on the 4.0.1

release in a separate project. Both projects use the same components, so they use

one PVOB.

Chapter 3. Planning the project 53

Consider using multiple PVOBs only if your projects are so large that PVOB

capacity becomes an issue. For more information, see “Using multiple PVOBs.”

Understanding the role of the administrative VOB

An administrative VOB stores global type definitions. VOBs that are joined to the

administrative VOB with AdminVOB hyperlinks share the same type definitions

without having to define them in each VOB. For example, you can define element

types, attribute types, hyperlink types, and so on in an administrative VOB. Any

VOB linked to that administrative VOB can then use those type definitions to

make elements, attributes, and hyperlinks.

If you currently use an administrative VOB, you can associate it with your PVOB

by creating an AdminVOB hyperlink between the PVOB and the administrative

VOB. On Windows computers, the VOB Creation Wizard creates the AdminVOB

hyperlink for you. On UNIX® workstations, use the cleartool mkhlink command

to create the AdminVOB hyperlink. Thereafter, when you create components,

AdminVOB hyperlinks are created between the VOBs that store the components’

root directories and the administrative VOB. These hyperlinks enable the

components to use the administrative VOB’s global type definitions.

If you do not currently use an administrative VOB, do not create one. When you

create components, AdminVOB hyperlinks are made between the VOBs that store

the component root directories and the PVOB, and the PVOB assumes the role of

administrative VOB.

For details on administrative VOBs and global types, see the IBM Rational ClearCase

Administrator’s Guide.

Using multiple PVOBs

Although you can use only one PVOB for all your projects, your organization

might have multiple PVOBs. In planning this configuration with multiple PVOBs,

consider the following factors:

v “Multiple PVOBs and a common administrative VOB” on page 55

GUI Admin

V4.0_Webotrans

GUI Admin

V4.0.1_Webotrans

Webotrans
PVOB

Figure 29. Related projects sharing one PVOB

54 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v “Multiple PVOBs and feature levels” on page 56

Multiple PVOBs and a common administrative VOB

If projects in one PVOB need to modify components in other PVOBs, your Rational

ClearCase administrator needs to identify one PVOB to serve as a common

administrative VOB for the PVOBs and the component VOBs. In Figure 30, PVOB1

and PVOB2 use PVOB3 as their administrative VOB.

The arrows from the PVOBs and the component VOBs represent AdminVOB

hyperlinks to PVOB3. Because the component VOBs and the PVOBs share a

common administrative VOB, all three projects can modify all three components.

For PVOBs that do not share a common administrative VOB, a project may select a

component from another PVOB but the component will be Read-Only within that

project.

In Figure 30, a PVOB serves as an administrative VOB.

PVOB3

= AdminVOB hyperlinks

PVOB1 PVOB2

Proj3

Proj1

C1

Proj2

VOB1 VOB2VOB3

/C1 /C2/C3

C3

C2

Figure 30. Using one PVOB as an administrative VOB for multiple PVOBs

Chapter 3. Planning the project 55

As an alternative to using a PVOB as an administrative VOB, you can link PVOBs

and component VOBs to an administrative VOB. This approach might be

appropriate if your development team is moving from base ClearCase to UCM and

you currently use an administrative VOB.

If you plan to use multiple PVOBs, create the PVOB that will serve as the

administrative VOB first. When you create the other PVOBs, specify the first PVOB

as the administrative VOB.

Multiple PVOBs and feature levels

For environments that implement multiple PVOBs, the first PVOB must be at

feature level 3 or higher. Adhering to this rule avoids a situation that UCM

software cannot detect and that could cause unknown problems. For example, if

one of your PVOBs is at feature level 2 and you configure a new stream in a PVOB

that is at feature level 2, you might have unknown problems. If the new stream is

configured with a baseline from a PVOB that is at feature level 3 or later, the new

stream will have configuration rules that can cause errors.

For instructions about raising the feature level of a VOB that is not replicated, see

IBM Rational ClearCase Administrator’s Guide and the chflevel reference page. For

instructions about raising the feature level of replicated VOBs, see IBM Rational

ClearCase MultiSite Administrator’s Guide.

Identifying special element types

The use of element types lets each class of elements be handled differently. An

element type is a class of file elements. Predefined element types, such as file and

text_file, are included. You can define your own element types. When you create

an element type for use in UCM projects, you can specify a mergetype attribute,

which determines how deliver and rebase operations handle merging of files of

that element type.

When a merge situation occurs during a deliver or rebase operation, an attempt is

made to merge versions of the element. User interaction is required only if

differences between the versions cannot be reconciled. For certain types of files,

you may want to impose different merging behavior.

Using mergetype to manage merge behavior

You can use element types for some classes of files for which you want to define a

merge behavior that differs from the behavior for predefined element types. For

some types of files, you may want to merge versions manually rather than let them

be merged automatically. One example is a Visual Basic form file, which is a

generated text file. Visual Basic generates the form file based on the form that a

developer creates in the Visual Basic GUI. Rather than let the form file be changed

during a merge operation, you want to regenerate the form file from the Visual

Basic GUI. For this type of file, the developer controls the contents of the file in the

target view. The developer might want to copy the version in the development

stream or generate a new version.

Some types of files never need to be merged. For these types of files, you may

want to ensure that no one attempts to merge them accidentally. For example, the

deployment, or staging, component contains the executable files that you ship to

customers or install in-house. These files are not under development; they are the

product of the development phase of the project cycle. During a deliver operation

56 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

(or a rebase operation), an attempt is made to merge these executable files to the

target versions unless the files are of an element type for which different merge

behavior is specified.

To define different merge behavior for special types of files in your environment,

you can create an element type and specify one of the following mergetypes:

v copy

During a merge or findmerge operation within a delivery or a rebase, a version

whose element type has the mergetype copy is not merged. The source version

is copied to the target version without user intervention.

v never

A merge or findmerge operation ignores versions whose element type has never

as a mergetype.

v user

A merge or a findmerge operation performs trivial merges only. Nontrivial

merges must be made manually. The graphic user interface (GUI) tools provide

extra options for user mergetype to keep the target version, copy the source

version (from the source stream), or back out of the deliver operation.

Note: If you fail to specify a mergetype of copy, never, or user for these element

types, developers may encounter problems when they attempt to deliver

work or rebase their streams. For example, default merge managers cannot

handle data in these files. Developers create executable files when they build

and test their work prior to delivering it. If these files are under version

control as derived objects, they are included in the change set of the current

activity.

For information about creating element types, see Chapter 15, “Using element

types to customize file element processing,” on page 229, and the mkeltype

reference page in the IBM Rational ClearCase Command Reference.

Defining the scope of element types

When you define an element type, its scope can be ordinary or global. By default,

the element type is ordinary; it is available only to the VOB in which you create it.

If you create the element type in an administrative VOB and define its scope as

global, other VOBs that have AdminVOB hyperlinks to that administrative VOB

can use the element type. If you want to define an element type globally, and you

do not currently use a separate administrative VOB, define the element type in the

PVOB.

Planning how to use the UCM integration with Rational ClearQuest

Before you can set up the UCM integration with Rational ClearQuest, you need to

make some decisions, which fall into two general categories:

v How to map PVOBs to Rational ClearQuest user databases

v Which schema to use for the Rational ClearQuest user databases

Mapping PVOBs to Rational ClearQuest user databases

You need to consider how to use PVOBs for projects that link to Rational

ClearQuest user databases.

Chapter 3. Planning the project 57

Rational ClearCase MultiSite requirement

If you use Rational ClearCase MultiSite, all PVOB replicas must have access to the

Rational ClearQuest user database. If you have multiple PVOBs linked to either an

administrative VOB or a PVOB acting as an administrative VOB, all of the PVOBs

and administrative VOBs in the hierarchy must be replicated to all sites. For

information on the use of Rational ClearQuest MultiSite, see “How the UCM

integration with Rational ClearQuest is affected by Rational ClearQuest MultiSite”

on page 104.

Integration requirement for Rational ClearQuest MultiSite

If your organization uses Rational ClearQuest MultiSite, you can register multiple

replicas of the same database set (connection). Ensure that developers at their sites

us the replica that accesses the user database at their local site. For information on

the use of Rational ClearQuest MultiSite, see “How the UCM integration with

Rational ClearQuest is affected by Rational ClearQuest MultiSite” on page 104.

Naming projects that are linked to same user database

Although UCM allows you to create projects with the same name in different

PVOBs, you cannot link those projects to the same Rational ClearQuest user

database (see Figure 31).

Give the projects unique names. For example, in Figure 31, if Project 3 were named

either Project 1 or Project 2 (which is valid in the UCM environment), the

generated name in the Rational ClearQuest user database would not be unique and

would cause the software to run erroneously. This naming requirement states that

the project names that appear in the Rational ClearQuest user database must be

unique.

ClearQuest User
Database

PVOB1

Project 1

Project 2

UCM_Project1

UCM_Project2

UCM_Project3

PVOB2

Project 3

Figure 31. Multiple PVOBs linked to the same Rational ClearQuest user database

58 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Use of multiple user databases

If some developers on your team work on multiple projects, you can store the

schemas for the Rational ClearQuest user databases that are linked to those

projects in one schema repository, as shown in Figure 32.

The databases that are named ClearQuest User Database 1 and ClearQuest User

Database 2™ are linked to the same schema repository.

If you use multiple user databases, give each one a unique name. If a developer

tries to access a user database whose name is not unique, the authentication can

fail. In using the command line interface to be authenticated, a developer can

specify only the name of the user database. (The graphic user interface requires

that the database set (connection) be supplied.) If multiple user databases share the

same name, the software cannot distinguish the difference in databases that have

the same name.

Using a single schema repository allows developers to switch between projects

easily. If you store the schemas in different schema repositories, developers must

connect to each schema repository once when they switch projects. The user name

and password are stored locally for each connection that they use. The project

manager or developer can provide or update the credentials by using the

cmregister command.

Deciding which schema to use

To use the UCM integration with Rational ClearQuest, you must create a new

Rational ClearQuest user database or upgrade an existing Rational ClearQuest user

database that is based on a UCM-enabled schema. A UCM-enabled schema meets

the following requirements:

v The UnifiedChangeManagement package has been applied to the schema. A

package contains metadata, such as records, fields, and states, that define

Schema
Repository

PVOB1

Project 1

PVOB2

ClearQuest User
Database 1

ClearQuest User
Database 2

Project 2

Schema 1

Schema 2

Figure 32. One schema repository for multiple Rational ClearQuest user databases

Chapter 3. Planning the project 59

specific functionality. Applying a package to a schema provides a way to add

functionality quickly so that you do not have to build the functionality from

scratch.

v The UnifiedChangeManagement package has been applied to at least one

record type. This package adds fields and scripts to the record type, and adds

the Unified Change Management tab to the record type’s forms.

v The UCMPolicyScripts package has been applied to the schema. This package

contains the scripts for three Rational ClearQuest development policies that you

can enforce.

Rational ClearQuest includes two predefined UCM-enabled schemas:

UnifiedChangeManagement and Enterprise. You can perform the following

actions with these schemas:

v Start using the integration readily by using one of the predefined schemas.

v Use the Rational ClearQuest Designer and the Rational ClearQuest Package

Wizard to enable a custom schema or another predefined schema to work with

UCM.

v Use one of the predefined UCM-enabled schemas as a starting point and modify

it to suit your needs.

Overview of the UnifiedChangeManagement schema

The UnifiedChangeManagement schema includes the following record types:

BaseCMActivity

This is a lightweight record type that you can use to store information

about activities that do not require additional fields. You may want to use

this record type as a starting point and then modify it to include additional

fields and states.

Defect This record type is identical to the record type of the same name that is

included in other predefined Rational ClearQuest schemas, with one

exception: it is enabled to work with UCM. The Defect record type

contains more fields and form tabs than the BaseCMActivity record type to

allow you to record detailed information.

UCMUtilityActivity

This record type is not intended for general use. The integration uses this

record type when it needs to create records for itself, such as when you

link a project that contains activities to a Rational ClearQuest user

database. You cannot modify this record type.

Enabling a schema for UCM

If you decide not to use one of the predefined UCM-enabled schemas, do some

additional work to enable your schema to work with UCM. Before you can do this,

you need to answer the following questions:

v Which record types are you enabling for UCM? You do not need to enable all

record types in your schema, but you can link only records of UCM-enabled

record types to activities.

v For each UCM-enabled record type:

– Which state type does each state map to? You must map each state to one of

the four UCM state types: Waiting, Ready, Active, Complete. See “Setting

state types” on page 78.

– Which default actions are you using to transition records from one state to

another? See “State transition default action requirements for record types” on

page 79.

60 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

– Which policies do you want to enforce? The integration includes policies that

you can set to enforce certain development practices. You can also edit the

policy scripts to change the policies. See Chapter 4, “Setting policies,” on page

63 for details.

Chapter 3. Planning the project 61

62 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 4. Setting policies

UCM includes policies that you can set to enforce certain development practices

within a project. The following types are described:

v “Components and baselines policies”

v “Default view types” on page 64

v “Permissions to modify projects and streams” on page 65

v “Policies for all deliver operations” on page 65

v “Policies for deliver operations to nondefault targets” on page 66

Some policies are available only if you enable the project to work with Rational

ClearQuest. See “Policies for the UCM integration with Rational ClearQuest” on

page 69.

In addition to the policies that UCM supplies, you can create your own policies by

using triggers on UCM operations. For information on using triggers, see

Chapter 8, “Using triggers to enforce UCM development policies,” on page 129.

Components and baselines policies

Some policies are related to components and baselines.

Modifiable components

In most cases, you want components to be modifiable. For information on when to

use read-only components, see “Identifying read-only components” on page 33.

Component modifiability and visibility

Component modifiability and visibility can affect the viability of alternate-target

deliver operations for migrating changes between two streams in the same project

or in different projects (see Figure 33).

From the source stream, an alternate target deliver operation can contain activities

with changes in components that (in the target stream) are read-only or are not

visible. This condition can occur for one of the following reasons:

ABC.BL0

Project X

BCDE.BL0

Project Y

A B C D E

Figure 33. Component modifiability and visibility

© Copyright IBM Corp. 1992, 2006 63

v A limited set of components or different sets of components are configured in

streams from the same project.

v Streams from different projects can have different modifiability.

For example, in Figure 33, components B and C in project X can be modifiable

while the same components in project Y are read-only.

v Streams from different projects can be configured with different sets of

components.

In project X, components D and E are not configured and therefore are not

visible. Likewise in project Y, component A is not configured and is not visible.

By default, if one of these conditions occurs, the deliver operation is prohibited.

The project manager can allow such deliver operations to proceed by setting a

policy on the target project or stream (see “Require that all source components are

visible in the target stream” on page 69).

Default promotion level for recommending baselines

Recommended baselines are typically the set of baselines that project team

members use to rebase their development streams. In addition, when developers

join the project, their development work areas are initialized with the

recommended baselines. When you recommend baselines, the Recommend

Baselines window lists the latest baselines that have promotion levels equal to or

higher than the promotion level that you specify as the default promotion level for

recommending baselines.

Default view types

When developers join a multiple-stream project, they use the Join Project Wizard to

create their development views, integration views, and development streams. They

use a development view that is attached to a development stream to work in

isolation from the project team. They use an integration view that is attached to the

parent stream of their development stream to build and test their work against the

latest work delivered to the parent stream by other developers.

Two kinds of views are provided: dynamic and snapshot. Specify which type of

view to use as the default for development and integration views. When

developers join the project, they may choose to accept or reject the default view

types. The Join Project Wizard uses the default values the first time that a

developer creates views for a project. Thereafter, the wizard uses the developer’s

most recent selections as the default view types.

Product Note: Rational ClearCase LT supports only snapshot views.

Dynamic views use the Rational ClearCase multiversion file system (MVFS) to

provide immediate, transparent access to files and directories stored in VOBs. On

Windows systems, a dynamic view is mapped to a drive letter in Windows

Explorer. Snapshot views copy files and directories from VOBs to a directory on

your computer.

Use dynamic views as the default view type for integration views. Dynamic views

ensure that when developers deliver work to the integration stream or

feature-specific development stream, they build and test their work against the

latest work that other developers have delivered since the last baseline was

64 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

created. Snapshot views require developers to copy the latest delivered files and

directories to their computer (a snapshot view update operation), which they may

forget to do.

Permissions to modify projects and streams

This section describes policies that control access to objects and determine who can

modify the project and stream objects.

Allow all users to modify the project

By default, this policy is disabled, meaning that only the project owner, PVOB

owner, or a privileged user can make changes to the project object. To allow all

users to modify the project object, enable this policy.

Allow all users to modify the stream and its baselines

By default, this policy is disabled, meaning that only the stream owner, PVOB

owner, or a privileged user can make changes to the stream or any baselines

created in it. To allow all users to modify the stream and its baselines, enable this

policy. You can set this policy to apply to all streams within the project or you can

set it on a per-stream basis.

Policies for all deliver operations

Some policies affect all deliver operations. You can set these policies to apply to all

streams within the project or you can set the policies on a per-stream basis. When

a developer starts a deliver operation, UCM checks the policy settings on the target

stream and the project. If the target stream policy setting is different than its

project policy setting, the project setting takes precedence. For information on

policies that apply only to deliver operations to nondefault targets, see “Policies for

deliver operations to nondefault targets” on page 66.

Do not allow deliver to proceed with checkouts in the

development stream

This policy prevents developers from delivering work to the target stream if some

files remain checked out in the source stream. The policy can be set per project or

per stream, for interproject and intraproject deliver operations.

If this policy is enabled, developers must check in all files in their source streams

before delivering work. You may want to require developers to check in files to

avoid the following situation:

1. A developer completes work on an activity, but forgets to check in all of the

files associated with that activity.

2. The developer works on other activities.

3. Having completed several activities, the developer delivers them to the target

stream. Because the files associated with the first activity are still checked out,

they are not included in the deliver operation. The developer delivers older

versions. Even though the developer may build and test the changes

successfully in the development work area, the changes delivered to the target

may fail because they do not include the checked-out files.

Rebase before delivery

This policy (Require development stream to be based on the project’s

recommended baseline(s) prior to delivery) requires developers to rebase their

Chapter 4. Setting policies 65

source streams to the target stream current recommended baselines before they

deliver work to the target stream. The policy can be set per project or per stream,

for interproject and intraproject deliver operations.

The goal of this policy is to have developers build and test their work in their

development work areas against the work included in the most recent stable

baselines before they deliver to the target stream. This practice minimizes the

amount of merging that developers must do when they perform deliver operations.

Policies for deliver operations to nondefault targets

Some policies apply only to deliver operations whose targets are not the default

target streams. You can set these policies to apply to all streams within the project

or you can set the policies on a per-stream basis. When a developer starts a deliver

operation, UCM checks the policy settings on the target stream and the project. If

the target stream’s policy setting is different than its project’s policy setting, the

project setting takes precedence. For information on policies that apply to all

deliver operations, see “Policies for all deliver operations” on page 65.

In a project, you can create a hierarchy of development streams. For details, see

“Stream hierarchies” on page 35. Such a hierarchy as shown in Figure 34 allows

you to designate a development stream as a shared area for developers working on

a particular feature.

Developers who work on that feature deliver work to the feature-specific

development stream Feature1. In Figure 34, the integration stream and the Feature1

development stream are ancestors of the Developer1 and Developer2 development

0

1

1

2 X

X X

Integration

Feature1

Developer1 Developer2

Nondefault

Nondefault

DefaultDefault

Figure 34. Default and nondefault deliver targets in a stream hierarchy

66 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

streams. The streams Feature1, Developer1, and Developer2 are descendants of the

integration stream. The default target for a deliver operation from a development

stream is the parent stream of that stream. Developers may also deliver to

nondefault target streams. The arrows in Figure 34 illustrate default and nondefault

deliver targets. The following policies apply only to such nondefault target

streams:

v “Deliver changes from the foundation in addition to changes from the stream”

v “Allow deliveries that contain changes to missing or non-modifiable

components” on page 68

v “Allow interproject deliver to project or stream” on page 69

v “Require that all source components are visible in the target stream” on page 69

Deliver changes from the foundation in addition to changes

from the stream

Set this policy to control accepting changes that did not originate in the delivery

stream. There are two versions of this policy: one for intraproject deliveries and

one for interproject deliveries. The policy can be set per project or per stream.

UCM uses foundation baselines to configure a stream. A view attached to a stream

selects the versions of elements identified by the stream foundation baselines plus

the versions of elements associated with any activities created in the stream. For

example, in Figure 35, 1 is the foundation baseline for the Feature1 development

stream. The X baseline is the foundation baseline for the Developer1 development

stream.

If the developer working in the Developer1 stream delivers work to the integration

stream, the deliver operation includes the activities created in the Developer1

stream plus the files represented by the X foundation baseline. The integrator

responsible for the integration stream may want to receive work that the developer

working in the Developer1 stream has completed; however, the integrator may be

unaware that the deliver operation also contains changes made in the X baseline.

You may want to set this policy to Disabled so that target streams do not accept

deliver operations that contain changes in the source stream’s foundation baselines.

If you set this policy to Enabled, the target stream accepts changes in the source

stream that result from differences in the foundation baselines of the two streams

in addition to changes in the source stream that the developer makes while

working on assigned activities.

Chapter 4. Setting policies 67

Allow deliveries that contain changes to missing or

non-modifiable components

Set this policy to control whether streams accept deliveries that contain changes to

components that are not modifiable in the project of the target stream. The policy

can be set per project or per stream. There are two versions of this policy:

v For interproject deliveries–Allow the deliver even though target stream is

missing components that are in the source stream

v For intraproject deliveries–Allow the deliver even though modifiable

components in the source stream are non-modifiable in the target stream

For information on modifiable components, see “Modifiable components” on page

63.

If you set this policy to enabled, UCM allows the deliver operation, but the

changes to any missing components or to any non-modifiable components are not

included and no errors are generated for the presence of the changes.

0

1

1

2

X

X

Integration

Feature1

Foundation
baseline

Developer1

Activity

Foundation
baseline

Figure 35. Delivering changes made in a foundation baseline

68 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Allow interproject deliver to project or stream

Set this policy to control whether streams accept deliveries from streams in other

projects. The policy can be set per project or per stream for interproject deliveries.

See Chapter 9, “Managing multiple projects,” on page 141, for examples of when

you may want to deliver work from one project to another.

Require that all source components are visible in the target

stream

Set this policy to control whether streams accept deliveries that contain changes to

components that are not in the target stream configuration. The policy can be set

per project or per stream. For information about component visibility, see

“Component modifiability and visibility” on page 63.

If you set this policy to disabled, UCM allows the deliver operation, but the

changes to any missing components are not included.

This policy is ignored if interproject delivery is disabled.

Policies for the UCM integration with Rational ClearQuest

Some policies are available only when you enable the project to work with

Rational ClearQuest. Some of the policies are customizable. In the Rational

ClearQuest environment, scripts are used to implement the customizable policies.

You can modify a policy behavior by editing its script. See “Customizing Rational

ClearQuest project policies” on page 81.

These policies apply to the UCM package that is supported by the current version

of Rational ClearQuest. If the user database uses an earlier UCM package version,

some of the policies that are shown here may not be available.

The policies apply to the following usages:

v “For submitting records from a Rational ClearCase client”

v “For WorkOn” on page 70

v “For delivery” on page 70

v “For changing activities” on page 72

For submitting records from a Rational ClearCase client

These policies affect the configuration of the UCM project. They are not visible

from Rational ClearQuest forms because they do not have corresponding Rational

ClearQuest hooks.

Disallow submitting records from ClearCase client

Set this policy to prevent developers from creating new activity records in the

project while they are working under source control. This policy is invoked when a

developer attempts to create a new activity. If this policy is set, when developers

work in source control, they cannot create new activities in which their changes are

recorded. In the graphic user interface, the New button is disabled for checkout,

checkin, cancel checkout and add to source control. The purpose is to restrict

creation of activity records to users, for example, project managers, who have

specific permission within the Rational ClearQuest schema.

If you disable this policy, developers can create new activity records in the Rational

ClearQuest user database when they are working under source control. Also, you

Chapter 4. Setting policies 69

can determine which record types are used in the Rational ClearQuest user

database for new activity records that are created outside the Rational ClearQuest

client (see “Allowed record types”).

This policy is not customizable.

Allowed record types

If you disable the Disallow submitting records from ClearCase client policy (see

“Disallow submitting records from ClearCase client” on page 69), you can specify

the record types that are allowed for new activity records in the Rational

ClearQuest user database from a Rational ClearCase client. When developers need

to create an activity, they see only the record types that you specify in this policy.

By default, the record types that are enabled by the UCM package (except

UCMUtilityActivity) are allowed.

This policy is not customizable.

For WorkOn

The policy described in “Perform ClearQuest action before work on” applies when

the developer clicks WorkOn in the Rational ClearQuest record form.

Perform ClearQuest action before work on

This policy is invoked when a developer attempts to set an activity. The default

policy script checks whether the developer’s user name matches the name in the

Rational ClearQuest record Owner field. If the names match, the developer can

work on the activity. If the names do not match, the WorkOn fails.

The intent of this policy is to ensure that all criteria are met before a developer can

start working on an activity. You may want to modify the policy to check for

additional criteria.

For delivery

The policies described in this section apply when developers deliver their work in

their project.

Perform ClearQuest action before delivery

This default policy script is a placeholder: it does nothing. This policy is invoked

when a developer attempts to deliver an activity in a UCM-enabled project. You

can edit the script to implement an approval process to control deliver operations.

For example, you may want to add an Approved field to the record type of the

activity and require that the project manager set it before allowing developers to

deliver activities.

See “Policies and interproject deliveries” on page 73 for details about deliveries

between two projects that are enabled for Rational ClearQuest.

Perform ClearQuest action after delivery

This policy is invoked at the end of a deliver operation for each activity included

in the deliver operation. The default policy script is a placeholder: it does nothing.

You may want to edit this script to implement a post-delivery development

practice. For example, you might want the script to send an e-mail message to all

developers on the project telling them that a deliver operation has just finished.

70 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

See “Policies and interproject deliveries” on page 73 for details about deliveries

between two projects that are enabled for Rational ClearQuest.

Transition to complete after delivery

This policy is invoked at the end of a deliver operation for each activity included

in the deliver operation. The policy uses the default action of the activity to

transition the activity to a Complete type state and unset the activity from its view.

These actions prevent the checkouts of versions in the change set from being

associated with the activity.

If the default action requires entries in certain fields of the activity record, and one

of those fields is empty, the policy returns an error and leaves the deliver operation

in an uncompleted state. This state prevents the developer from performing

another deliver operation, but it does not affect the current one. It does not roll

back changes made during the merging of versions.

To recover from an error, the developer needs to fill in the required fields in the

activity record and resume the deliver operation. If the developer invoked the

deliver operation from a graphic user interface (GUI), the integration displays the

Rational ClearQuest record form so that the developer can fill in the fields.

This policy is not customizable.

See “Policies and interproject deliveries” on page 73 for details about deliveries

between two projects that are enabled for Rational ClearQuest.

Transfer ClearQuest mastership before delivery

The Transition to Complete After Delivery project policy transitions activities to a

Complete type state when a deliver operation completes successfully. For that

policy to work correctly in a Rational ClearCase MultiSite environment, the

activities being delivered must be mastered by the same replica that masters the

target stream. To ensure that this is the case, you can set the Transfer Mastership

Before Delivery policy.

The behavior of the Transfer Mastership Before Delivery policy depends on

whether the deliver operation is local or remote. If the deliver operation is local,

meaning that the target stream is mastered by the local PVOB replica, this policy

causes the deliver operation to fail unless all activities being delivered are

mastered locally.

A remote deliver operation is one for which the target stream is mastered by a

remote PVOB replica. The developer starts the deliver operation, but the operation

is left in a posted state. The integrator at the remote site completes the deliver

operation.

For a remote deliver operation, the Transfer Mastership Before Delivery policy

causes the following behavior:

v If all activities in the deliver operation are mastered by the remote replica, the

deliver operation is allowed to proceed.

v If the deliver operation contains activities that are mastered by the local replica,

Rational ClearCase MultiSite transfers mastership of those activities to the

remote replica. To have Rational ClearCase MultiSite transfer mastership of those

activities back to the local replica after the integrator at the remote site performs

any required merges and completes the deliver operation, set the Transfer

ClearCase Mastership After Delivery policy also.

Chapter 4. Setting policies 71

v If the deliver operation contains activities that are mastered by a third replica,

the deliver operation fails.

This policy is not customizable.

See “Policies and interproject deliveries” on page 73 for details about deliveries

between two projects that are enabled for Rational ClearQuest.

Transfer ClearQuest mastership after delivery

Use this policy only in conjunction with the Transfer ClearQuest Mastership Before

Delivery policy. The Transfer ClearQuest Mastership Before Delivery policy

transfers mastership of activities involved in a remote deliver operation from the

local replica to a remote replica. Set this policy if you want to transfer mastership

of those activities back to the original (local) replica after the integrator at the

remote site completes the deliver operation.

This policy is not customizable.

See “Policies and interproject deliveries” on page 73 for details about deliveries

between two projects that are enabled for Rational ClearQuest.

For changing activities

The policies described in this section apply when developers work on their

activities.

Perform ClearQuest action before changing activity

This default policy script is a placeholder: it does nothing. This policy is invoked

when a developer attempts to finish an activity. The finish activity operation

checks in all files that belong to the activity change set and performs Rational

ClearQuest actions, such as modifying the state of the activity to a Complete type

state, based on the policies that you set. When invoked in a single-stream project

or on the integration stream of a multiple-stream project, the finish activity

operation is similar to a deliver operation in a multiple-stream project. Both

operations share changes with the rest of the team.

You can edit the script to implement an approval process to control finish activity

operations. For example, you may want to add an Approved field to the record

type of the activity and require that the project manager set it before allowing

developers to finish activities.

Perform ClearQuest action after changing activity

This policy is invoked when a developer attempts to finish an activity. If the

Perform ClearQuest Action Before Changing Activity policy is set, this policy is

invoked first. The default policy script behaves as follows:

v For developers working in a single-stream project or on the integration stream of

a multiple-stream project, allow the finish activity operation.

v For developers working on a development stream, check in all files that belong

to the activity’s change set but do not perform any Rational ClearQuest actions.

You may want to edit this script to implement a post-finish activity development

practice. For example, you might want the script to send an e-mail message to all

developers on the project telling them that a developer has just checked in files

and finished an activity.

72 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Transition to complete after changing activity

This policy is invoked at the end of a finish activity operation. The policy uses the

activity’s default action to transition the activity to a Complete type state. If the

default action requires entries in certain fields of the activity record, and one of

those fields is empty, the policy returns an error. To recover from an error, the

developer needs to fill in the required fields in the activity record.

You may want to transition activities to a Complete type state depending on

whether the developer works in an integration stream.

v To transition activities only for developers who work in a single-stream project

or on the integration stream of a multiple-stream project, set this policy and the

Perform ClearQuest Action After Changing Activity policy.

v To transition activities regardless of which stream the developer works on, set

this policy and clear the Perform ClearQuest Action After Changing Activity

policy.

This policy is not customizable.

Policies and interproject deliveries

With one exception, the integration does not invoke the following policies when

you deliver from one project that is enabled for Rational ClearQuest to another

that is also enabled for Rational ClearQuest:

v Perform ClearQuest Action Before Delivery

v Perform ClearQuest Action After Delivery

v Transition to Complete After Delivery

v Transfer ClearQuest Mastership Before Delivery

v Transfer ClearQuest Mastership After Delivery

The integration invokes the policies that are set for the project of the source stream

only if the following conditions are true:

v The source and target streams are integration streams.

v The target stream is the default deliver target for the source stream.

Chapter 4. Setting policies 73

74 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 5. Setting up a Rational ClearQuest user database for

UCM

This chapter describes how to set up a Rational ClearQuest user database for use

with UCM. For information about the decisions that you need to make before you

set up the integration, see “Planning how to use the UCM integration with

Rational ClearQuest” on page 57.

About setting up a Rational ClearQuest user database

To use the UCM integration with Rational ClearQuest for your project, set up a

Rational ClearQuest user database.

The steps to do the setup are typically completed by the Rational ClearQuest user

database administrator or the schema designer. You have the following options.

v Take advantage of predefined schemas that Rational ClearQuest includes. These

are ready for use with UCM (see “Using the predefined UCM-enabled schemas”

on page 75).

v Enable a custom schema, or another predefined schema, to work with UCM.

This allows you to use UCM with a current Rational ClearQuest configuration

(see “Adding UCM support to an existing schema” on page 75). Because this

integration is a dependent integration, you must add one or more packages in a

specific order and perform additional configurations to the Rational ClearQuest

user database.

Using the predefined UCM-enabled schemas

The easier way to set up a Rational ClearQuest user database for UCM is to use

either the UnifiedChangeManagement or the Enterprise predefined UCM schema.

Each schema already includes the record type, field, form, state, and other

definitions necessary to work with a UCM project. Follow the procedure described

in “To set up a Rational ClearQuest user database to work with UCM.”

To set up a Rational ClearQuest user database to work with

UCM

1. Create a user database that is associated with one of the predefined

UCM-enabled schemas. In the Rational ClearQuest Designer, click Database >

New Database to start the New Database Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to

associate with the new database. Scroll the list of schema names and select

either the UnifiedChangeManagement or the Enterprise schema.

3. Click Finish.

Adding UCM support to an existing schema

The predefined UCM schemas let you use the UCM integration with Rational

ClearQuest right away (see “Using the predefined UCM-enabled schemas”).

However, you may prefer to design a custom schema to track your project

activities and change requests, or you may prefer to use a different predefined

schema. For your schema to work with UCM, you need to apply several packages

© Copyright IBM Corp. 1992, 2006 75

in a prescribed order. These packages must be added in the order described for

each step. Integrating your schema with UCM packages requires that the following

actions be done in the order described:

1. Adding the AMStateTypes Package.

2. Setting the Default Actions for UCM.

3. Adding the UCMPolicyScripts Package.

4. Adding the UnifiedChangeManagement Package.

5. Adding the UCMProject Package.

6. Adding the BaseCMActivity Package (optional).

7. Saving the Schema Changes.

8. Configuring Rational ClearCase UCM.

Note: To avoid errors, you must install packages in the order described.

The AMStateTypes Package provides additional support for UCM and its state

types. Installing this package requires that you map schema states to the following

state types: Waiting, Ready, Active, and Complete. The package adds the

am_statetype field to the enabled record type.

The UCMPolicyScripts Package adds three global scripts and does not add any

record types.

The UnifiedChangeManagement package does the following:

v Adds the UCMUtilityActivity record type.

v Adds UCM_Project stateless record type.

v Adds UCM queries to the Rational ClearQuest client workspace under the

Public Queries folder.

v Adds the ucm_base_ synchronize action to the enabled record type.

Although the BaseCMActivity package is not necessary, you may want to apply it

to your schema. The BaseCMActivity package adds the BaseCMActivity record

type to your schema. The BaseCMActivity record type is a lightweight activity

record type. You may want to use the BaseCMActivity record type as a starting

point and then modify it, for example, to include additional fields and states. If

you want to rename the BaseCMActivity record type, be sure to do so before you

create any records of that type.

To enable a schema to work with UCM

 1. In the Rational ClearQuest Designer, ensure that the schema does not contain

a record type named UCM_Project, which is a reserved name used by the

UCM integration with Rational ClearQuest.

 2. Ensure that the schema to which you are adding packages is checked in. To

check in a schema, click File > Check In.

 3. Click Package > Package Wizard to start the Package Wizard.

 4. Add the latest AMStateTypes package to the schema. For information on

applying packages, see IBM Rational ClearQuest MultiSite Administrator’s Guide.

The AMStateType package requires you to map state types (see “To map

record states to state types” on page 77) and set default actions, if they have

not already been defined.

 5. Set the default actions for UCM (see “To set default actions for states” on page

80).

 6. Add the UCMPolicyScripts package to the schema. For information on

applying packages, see IBM Rational ClearQuest MultiSite Administrator’s Guide.

76 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

7. Add the UnifiedChangeManagement package to the schema. For information

on applying packages, see IBM Rational ClearQuest MultiSite Administrator’s

Guide.

The AMStateTypes package is also applied.

 8. In the second page of the wizard, select your schema. Click Next.

 9. The third page of the wizard prompts you to specify the schema record types.

Set the check boxes of the record types that you want to enable. Click Finish.

All selected record types must meet the requirements listed in “Requirements

for enabling custom record types” on page 78.

10. In the Setup State Types page, assign state types to the states for each record

type. For information about assigning state types, see “Assigning state types

to the states of a record type.” For information about performing the task, see

“To map record states to state types.” Click Finish.

11. Set default actions for the states of each enabled record type (see “To set

default actions for states” on page 80). Default actions are state transition

actions that are taken when a developer begins to work on an activity or

delivers an activity (see “State transition default action requirements for record

types” on page 79).

12. In the Rational ClearQuest Designer workspace, navigate to the record type

Behaviors (click schema > Record Types > Record Type > States and

Actions > Behaviors). Double-click Behaviors to display the Behaviors grid.

a. Verify that the Headline field is set to Mandatory for all states.

b. Verify that the Owner field is set to Mandatory for all Active and Ready

state types.
13. Validate the schema changes by clicking File > Validate. Fix any errors that

are displayed, and then check in the schema by clicking File > Check In.

14. Do one of the following actions:

v Click Database > Upgrade Database to upgrade the user database so that it

is associated with the UCM-enabled version of the schema.

v Create a new user database that is based on the UCM-enabled version of

the schema.

Assigning state types to the states of a record type

For each record type that you choose to enable (see “To enable a schema to work

with UCM” on page 76), you must map its states to state types that are defined in

the AMStateTypes package. For example, when you apply the

UnifiedChangeManagement package to the schema, the UCMUtiltityActivity

record type is added. If you try to check in the schema with these changes, you see

messages that describe validation errors. You need to map the states of the

UCMUtiltityActivity record type to the states in the AMStatesTypes package.

Likewise, if you apply the BaseCMActivity package to the schema, map the states

of the BaseCMActivity record type to the state of the AMStatesTypes package.

You see these validation errors because the AMStatesTypes package is applied to

the schema when you apply the UnifiedChangeManagement package. To

eliminate the validation errors and be able to check in the schema, for each record

type that is added, map its states to the state types of the AMStatesTypes package.

To map record states to state types

1. Run the Rational ClearQuest Designer.

2. Do one of the following:

Chapter 5. Setting up a Rational ClearQuest user database for UCM 77

v If you are running Package Wizard in the Rational ClearQuest Designer,

advance to the Setup State Types page.

v If the Setup State Types page of the wizard does not appear, click

Package > Setup State Types.
3. In the Setup State Types window, for each record type that is listed in Record

Type, do the following:

a. For each state in the States column, click in the adjacent cell under State

Type to display the list of available state types.

b. Select one of the entries.

c. To display the states of another record type, click the arrow in the Record

Type and select another of the available record types.

See “Setting state types” on page 78 for a description of the four state types,

and the rules for setting them.

Requirements for enabling custom record types

Before you can apply the UnifiedChangeManagement package to a custom record

type (see “To enable a schema to work with UCM” on page 76), the record type

must meet the following requirements:

v It contains a field named Headline defined as a SHORT_STRING, and a field

named Owner defined as a REFERENCE to the users record type that is

supplied with Rational ClearQuest. The Headline field must be at least 120

characters long.

v It does not contain fields with these names:

– ucm_vob_object

– ucm_stream

– ucm_stream_object

– ucm_view

– ucm_project

v It contains an action named Modify of type Modify.

v It contains a state named Submitted.

Note: You can change the name of the state after you apply the

UnifiedChangeManagement package.

Setting state types

The UCM integration with Rational ClearQuest uses a state transition model to

help you monitor the progress of activities. To implement this model, the

integration adds state types to UCM-enabled schemas. Table 2 lists and describes

the four state types. You must assign each state to a state type (see “To map record

states to state types” on page 77). You must have at least one state definition of

state type Waiting, one of state type Ready, one of state type Active, and one of

state type Complete.

 Table 2. State Types in UCM-Enabled Schema

State type Description

Waiting The activity is not ready to be worked on, either because it has not been

assigned or it has not satisfied a dependency.

Ready The activity is ready to be worked on. It has been assigned, and all

dependencies have been satisfied.

Active The developer has started work on the activity but has not completed it.

78 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Table 2. State Types in UCM-Enabled Schema (continued)

State type Description

Complete The developer has either worked on and completed the activity, or not

worked on and abandoned the activity.

State transition default action requirements for record types

Record types can include numerous state definitions. However, UCM-enabled

record types must have at least one path of transitions among state types as

follows: Waiting to Ready to Active to Complete (see “Setting state types” on page

78). The transition from one state to the next must be made by a default action.

For example, Figure 36 shows the actions and default actions between the states

defined in the UCM-enabled BaseCMActivity record type included in the

predefined UCM schema. The states are Submitted, Ready, Active, and Complete.

The corresponding state types appear to the right of the states.

In addition to this single path requirement, states must adhere to the following

rules:

v All Waiting type states must have a default action that transitions to another

Waiting type state or to either a Ready or Active type state.

Submitted

*Complete

*Assign

*Activate

Postpone

Postpone

Reopen

Ready

Active

Complete

Waiting

Ready

Active

Complete

Figure 36. State transitions of UCM-enabled BaseCMActivity record type

Chapter 5. Setting up a Rational ClearQuest user database for UCM 79

v If a Ready type state has an action that transitions directly to a Waiting type

state, that Waiting type state must have a default action that transitions directly

to that Ready type state.

v All Ready type states must have a default action that transitions to another

Ready type state or to an Active type state.

v All Ready type states must have at least one action that transitions directly to a

Waiting type state.

v For the BaseCMActivity record type, its initial state must be a Waiting type.

To set default actions for states

1. In the Rational ClearQuest Designer workspace, click Record Types >

Activity > States and Actions to navigate to the record type state transition

matrix.

2. Double-click State Transition Matrix to display the matrix.

3. Right-click the state column heading, and click Properties.

4. Click the Default Action tab. Select the default action. See “State transition

default action requirements for record types” on page 79 for default action

requirements.

Before you can set default actions, you may need to add some actions to the

record type. To do so, double-click Actions to display the Actions grid, and

then click Edit > Add Action.

5. Click File > Check In to check in the schema.

Upgrading your schema to the latest UCM package

If you have a UCM-enabled Rational ClearQuest schema from a previous release of

Rational ClearQuest, you may want to upgrade that schema with the latest

revision of the UnifiedChangeManagement package so that you can use new

functionality.

To upgrade the schema

1. In the Rational ClearQuest Designer, click Package > Upgrade Installed

Packages to start the Upgrade Installed Packages Wizard.

2. The first page of the wizard lists all schemas that have at least one package that

needs to be upgraded. Select the schema that you want to upgrade, and click

Next.

3. The second page of the wizard lists the packages that will be upgraded. Click

Upgrade to accept the changes.

4. If the UnifiedChangeManagement package from which you are upgrading is

earlier than revision 3.0, you need to assign states to state types for each

UCM-enabled record type. For information about performing this operation, see

“To map record states to state types” on page 77.

5. Validate the schema changes by clicking File > Validate. Fix any errors that are

displayed, and then check in the schema by clicking File > Check In.

6. Upgrade the user database to associate it with the new version of the schema

by clicking Database > Upgrade Database.

80 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Customizing Rational ClearQuest project policies

To implement the project policies, the integration adds the following pairs of

scripts to a UCM-enabled schema:

v UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver_Def

v UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def

v UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

v UCM_CQActBeforeChact and UCM_CQActBeforeChact_Def

v UCM_CQActAfterChact and UCM_CQActAfterChact_Def

Each policy has two scripts: a base script and a default script. The default scripts

have _Def appended to their names and are installed by the

UnifiedChangeManagement package. The integration invokes the base scripts,

which are installed by the UCMPolicyScripts package. The base scripts call the

corresponding default scripts. You can modify the behavior of a policy by editing

the base script (see “To modify the behavior of a policy”).

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts

have a UCM prefix. The Perl scripts have a UCU prefix. For Rational ClearQuest

clients on the Windows system, the integration uses the Visual Basic scripts. For

Rational ClearQuest clients on Linux® and the UNIX system, the integration uses

the Perl scripts. If you modify a policy behavior and your environment includes

Rational ClearQuest clients on different types of platforms, be sure to make the

same changes in both the Visual Basic and Perl versions of the policy script.

Otherwise, the policy will behave differently for Rational ClearQuest clients on

Linux and the UNIX system and the Windows system.

For descriptions of these policies, see “Policies for the UCM integration with

Rational ClearQuest” on page 69.

To modify the behavior of a policy

1. Remove the call to the default script from the base script.

2. Add logic for the new behavior to the base script.

Adhere to the rules stated in the base script.

Associating child activity records with a parent activity record

As project manager, you may assign activities for large tasks to developers. When

the developers research their activities, they may determine that they need to

perform several separate activities to complete one large activity. For example, an

“Add customer verification functionality” activity may require significant work in

multiple product components, for example, the graphic user interface (GUI), the

command-line interface, and a library. To more accurately track the progress of the

activity, you can decompose it into three separate activities.

By using the parent and child controls in Rational ClearQuest, you can accomplish

this decomposition and tie the child activities back to the parent activity.

Using parent and child controls

In the Rational ClearQuest interface, you use controls to display fields in record

forms. A parent and child control, when used with a reference or reference list

field, lets you link related records. By adding a parent and child control to the

Chapter 5. Setting up a Rational ClearQuest user database for UCM 81

record form of a UCM-enabled record type, you can provide the developers on

your team with the ability to decompose a parent activity into several child

activities.

To have the state of the parent activity changed to Complete when all child

activities have been completed, you need to write a hook. See IBM Rational

ClearQuest MultiSite Administrator’s Guide for an example of such a hook.

Creating users and adding credentials

Before you can assign activities to the developers on your project team, you must

create in a Rational ClearQuest user database user account profiles for each

developer. See IBM Rational ClearQuest MultiSite Administrator’s Guide and the

Rational ClearQuest Designer Help for details on creating user profiles. You must

also add credentials that allow users to be logged in to the Rational ClearQuest

user databases that they need to access.

To create Rational ClearQuest user account profiles

1. In Rational ClearQuest Designer, click Tools > User Administration.

2. Click User Action > Add User.

3. Complete the Add User window.

Creating and maintaining credentials for Rational ClearQuest

database sets

The UCM integration with Rational ClearQuest supports multiple database sets

(connections). Each connection for each user database on a system requires

credentials: the user name and password for access to the Rational ClearQuest user

database. If a user of the integration performs an action that requires the login to a

different database, the integration accesses stored credentials and attempts to

perform the login. You or the developer can register the credentials.

The usage of credentials differs between the Rational ClearCase command line

interface (CLI) and the graphic user interface (GUI). For a CLI user, if the

credentials are not registered, the user sees a message requesting that the

credentials be created. For a GUI user, a login window is displayed for the

credentials to be supplied. The GUI stores the credentials for that user database

after a successful login. After credentials are registered, the user does not have to

enter credentials to subsequently use the integration on that system for that

database set.

In environments where multiple database sets are used with the integration, the

user may need to be logged in to a different user database. Credentials are

required for a change in login in the following usages:

v The project manager enables a UCM project to use the integration.

v A user displays or sets project policies related to the integration.

v A developer works on an activity in a project that is enabled for the integration.

v A user displays properties of a Rational ClearQuest activity record that has

contributions from a project that is connected to another Rational ClearQuest

user database.

v A developer who accesses multiple UCM projects that are connected to different

Rational ClearQuest database sets does one of the following operations:

– Starts a delivery in one project while working in another project.

82 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

– Delivers changes in a stream in one project to a stream in another project.
v A developer transitions a Rational ClearQuest activity record.

Create and maintain the credentials on the user’s system for each database set. The

credential information is stored on the system so that the user can be logged in by

the integration server when a different user database is accessed. If no credentials

exist for a user when a connection to another user database is required, an error

message is generated.

Use the crmregister command for the following purposes:

v Create a new entry or overwrite an existing entry. For example:

crmregister add -database MY_DB -connection 07.00

-user jsmith -password mypassword

v Delete an entry or all entries. For example:

crmregister remove -database MY_DB

crmregister remove -all

v Modify the specified fields for a specified user database. For example:

crmregister replace -database MY_DB -password mynewpassword

Setting the environment (Linux and the UNIX system)

Before you can enable a UCM project to work with a Rational ClearQuest user

database, you must define the environment variables as shown in Table 3.

Developers who want to use the integration must also define these variables on

their machines.

The Rational ClearQuest installation directory includes a C shell script,

cq_setup.csh, which you can run to set the environment variables for you. For

example:

% source cquest–home–dir/cq_setup.csh

 Table 3. Environment variables required for integration

Variable Setting

$CQ_HOME cquest–home–dir

$LD_LIBRARY_PATH

$SHLIB_PATH (on HP-UX)

Must include:

cquest–home–dir/shlib

cquest–home–dir/architecture/shlib

$SQUID_DBSET If you have multiple Rational ClearQuest

schema repositories, set the environment

variable to the name of the schema repository to

use.

Chapter 5. Setting up a Rational ClearQuest user database for UCM 83

84 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 6. Setting up the project

This chapter describes how to set up a UCM project.

About setting up the project

You set up a project so that a team of developers can work in the Unified Change

Management (UCM) environment. Before you set up a project, be sure to plan the

project. See Chapter 3, “Planning the project,” on page 29 for information on what

to include in a configuration management plan.

In setting up a project, you may encounter the following scenarios:

v Creating a project from scratch

v Creating a project based on an existing base ClearCase configuration

v Creating a project based on an existing project

v Enabling a project to use the UCM integration with Rational ClearQuest

v Working with Rational Suite

v Creating a development stream reserved for testing new baselines

v Creating a feature-specific development stream

If you work in a multiple project environment, see Chapter 9, “Managing multiple

projects,” on page 141.

Creating a project from scratch

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Set up
project

Create a
PVOB

Create
components

Create
integration view

Create directory
structure

Create
a project

Create project
baseline

© Copyright IBM Corp. 1992, 2006 85

You can create and set up a new project that is not based on an existing project or

on an existing set of VOBs.

Creating the project VOB

In setting up a project from scratch, create a project VOB (PVOB). Creating the

PVOB differs between the Windows system and Linux or the UNIX system. After

you create the PVOB, you can create components.

To create a PVOB (the Windows system)

Product Note: This task does not apply to Rational ClearCase LT users. The

Rational ClearCase administrator creates the PVOB during the

installation.

1. Start the VOB Creation Wizard (see “To start the VOB Creation Wizard (the

Windows system)” on page 86).

2. In Step 1 of the VOB Creation Wizard, enter a name for the PVOB. Enter a

comment to describe the purpose of the PVOB. Leave the This VOB will

contain UCM components check box clear. Although you can use one VOB as

the PVOB and a component, do not do so unless your project is very small and

you anticipate that it will remain small. Set Create as a UCM project VOB.

3. In Step 2, specify the PVOB storage directory. A PVOB storage directory is a

directory tree that serves as the repository for the PVOB contents. A PVOB

storage directory contains the same subdirectories as a VOB storage directory.

(For details about VOB storage directory structure, see the IBM Rational

ClearCase Administrator’s Guide.) You can choose one of the recommended

locations or enter the universal naming convention (UNC) path of a different

location. Click Browse to search the network for shared resource locations.

4. Step 3 prompts you to choose an administrative VOB to be associated with the

PVOB. Because you are creating a project from scratch and do not currently use

an administrative VOB, scroll to the top of the list and select none. When you

create components, AdminVOB hyperlinks are made between the components

and the PVOB, and the PVOB assumes the role of administrative VOB.

If you are creating multiple PVOBs and anticipate that projects in those PVOBs

may need to modify some of the same components, choose one PVOB to act as

the administrative PVOB and create it first. When you create the other PVOBs,

use this step in the wizard to specify the PVOB that will serve as

administrative VOB. When you create components, AdminVOB hyperlinks are

made between the components and the PVOB that serves as the administrative

VOB. See “Planning PVOBs” on page 53 for details about using multiple

PVOBs.

To start the VOB Creation Wizard (the Windows system)

On the Rational ClearCase server host, click Start > Programs > IBM Rational >

IBM Rational ClearCase > Administration > Create VOB. The VOB Creation

Wizard is displayed.

To create a PVOB (Linux and the UNIX system)

Product Note: This task does not apply to Rational ClearCase LT users. The

Rational ClearCase administrator creates the PVOB during the

installation.

1. Issue the cleartool mkvob command. For example:

cleartool mkvob –tag /vobs/myproj2_pvob –nc –ucmproject \

/usr/vobstore/myproj2_pvob.vbs

86 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The –ucmproject option indicates that you are creating a PVOB instead of a

VOB. The /usr/vobstore/myproj2_pvob.vbs path specifies the location of the

PVOB storage directory. A PVOB storage directory is a directory tree that serves

as the repository for the PVOB contents. A PVOB storage directory contains the

same subdirectories as a VOB storage directory. For details about VOB storage

directory structure, see the IBM Rational ClearCase Administrator’s Guide.

If you are in an MVFS environment and developers use dynamic views,

perform the following two steps.

2. Create the PVOB mount point to match the PVOB tag. For example:

mkdir /vobs/myproj2_pvob

3. Mount the PVOB. For example:

cleartool mount /vobs/myproj2_pvob

The PVOB assumes the role of administrative VOB. When you create components,

AdminVOB hyperlinks are automatically made between the components and the

PVOB.

If you are creating multiple PVOBs and anticipate that projects in those PVOBs

may need to modify some of the same components, choose one PVOB to act as the

administrative PVOB and create it first. When you create the other PVOBs, use the

cleartool mkhlink command to create an AdminVOB hyperlink between each

PVOB and the PVOB that acts as the administrative VOB. For more information

about using multiple PVOBs, see “Planning PVOBs” on page 53.

When you create components, AdminVOB hyperlinks are made between the

components and the PVOB that serves as the administrative VOB.

Creating components for storing baseline dependencies

After you create the PVOB (see “Creating the project VOB” on page 86), you can

create components whose sole function is to store baseline dependencies. If you

create components without a VOB root directory, nobody can create elements in

the components. A component that has no VOB root directory cannot store its own

elements. Although you can store baseline dependencies and elements in the same

component, it is cleaner to dedicate components for storing baseline dependencies.

For the most configuration flexibility, use pure composite baselines in the project.

To use pure composite baselines, create components without a VOB root directory.

For more information on pure composite baselines, see “Pure composite baselines”

on page 47.

You can also use a pure composite baseline to represent the project configuration.

Use one top-level pure composite baseline that selects the baselines of all

components in the project, either directly or indirectly through other composite

baselines. Using a pure composite baseline to represent the project is easier than

keeping track of a set of baselines, one for each component. For more information

on identifying a project baseline, see “Identifying a project baseline” on page 46.

After you create components without a VOB root directory, you can create

components for storing elements (see “Creating components for storing elements”

on page 88).

To create a component without a VOB root directory

1. Start the Project Explorer (see “To start Project Explorer” on page 88).

Chapter 6. Setting up the project 87

2. The left pane of the Project Explorer lists folders for all PVOBs in the local

Rational ClearCase domain. Each PVOB has its own root folder. The root folder

is created using the name of the PVOB. Navigate to the PVOB that you created.

3. Locate a folder called Components, which contains entries for each component

in the PVOB. Right-click the Components folder and click New > Component

Without a VOB.

4. In the Create Component Without a VOB window, enter a name and

description for the component. Click OK.

To start Project Explorer

The Project Explorer is the graphical user interface (GUI) through which you

create, manage, and view information about projects.

On a Windows system, do one of the following:

v In the shortcut pane of Rational ClearCase Explorer, click UCM and then click

Project Explorer.

v Click Start > Programs > IBM Rational > IBM Rational ClearCase > Project

Explorer.

On Linux and the UNIX system, at a shell prompt, enter clearprojexp.

Creating components for storing elements

You create ordinary components for storing the files that your team develops and

the directories in which those files are cataloged.

Product Note: The process for creating components that store elements is slightly

different for Rational ClearCase and Rational ClearCase LT.

When you create an ordinary component, you must specify the VOB that stores the

component directory tree. You can store multiple components in a VOB, or you can

create a VOB that stores one component. See “Deciding how many VOBs to use”

on page 31 for details about using one VOB to store multiple components.

When you create an ordinary component, it includes an initial baseline with a

name in the following format:

component-name_INITIAL

This baseline selects the /main/0 version of the root directory of the component. It

serves as the starting point for successive baselines of the component.

To create a multiple-component VOB (Windows)

1. Start the VOB Creation Wizard (see “To start the VOB Creation Wizard (the

Windows system)” on page 86).

2. Enter a name for the VOB. Enter a comment to describe the purpose of the

VOB. Set This VOB will contain UCM components.

3. Set Allow this VOB to contain multiple components and Seed the VOB with

these components. Select a view from the View list, and click Add.

In the Add Component window, enter the component name and root directory,

and click OK. The component appears in the list in the wizard. Click Add to

create additional components. The component name must be unique within its

PVOB.

88 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

4. Specify where to store the VOB. You can choose one of the recommended

locations or enter the UNC path of a different location. Click Browse to search

the network for shared resource locations.

5. Identify the PVOB that will store the project information about the components.

Click the arrow to see the list of available PVOBs. Select the PVOB that you

previously created (see “Creating the project VOB” on page 86).

To create a multiple-component VOB in Rational ClearCase LT

(Windows)

On the Rational ClearCase LT server host, when the VOB Creation Wizard runs

(see “To start the VOB Creation Wizard (the Windows system)” on page 86), follow

these steps:

1. Enter a name for the VOB. Enter a comment to describe the purpose of the

VOB.

2. Set Allow this VOB to contain multiple components and Seed the VOB with

these components. Select a view from the View list, and click Add.

Enter the component name and root directory in the Add Component window,

and click OK. The component appears in the list in the wizard. Click Add to

create additional components. The component name must be unique within its

PVOB.

3. Specify where to store the VOB. This page of the wizard lists the VOB storage

locations created by your Rational ClearCase administrator. If only one VOB

storage location exists, the VOB Creation Wizard skips this step and uses that

VOB storage location.

To create a multiple-component VOB (Linux and the UNIX

system)

1. Use the cleartool mkvob command. For example:

cleartool mkvob –nc –tag /vobs/testvob13 /usr/vobstore/testvob13.vbs

If you are in an MVFS environment and developers use dynamic views,

perform the following two steps.

2. Create the VOB mount point to match the VOB tag. For example:

mkdir /vobs/testvob13

3. Mount the VOB. For example:

cleartool mount /vobs/testvob13

To create a multiple-component VOB in Rational ClearCase LT

(Linux and the UNIX system)

On the Rational ClearCase LT server host, use the cleartool mkvob command. For

example:

cleartool mkvob –nc -tag /testvob13 -stgloc vobstore

To create a component and store it in the VOB

1. In Rational ClearCase Project Explorer, right-click the Components folder and

click New > Component in a VOB.

2. In the Create a Component in a VOB window, from the VOB list, select the

VOB that will contain the component.

3. Enter a name for the component and the component root directory. Click OK.

To create one component per VOB (Windows)

1. Start the VOB Creation Wizard (see “To start the VOB Creation Wizard (the

Windows system)” on page 86).

Chapter 6. Setting up the project 89

2. Enter a name for the component. The component name must be unique within

its PVOB. Enter a comment to describe the purpose of the component. Set This

VOB will contain UCM components.

3. Set Create VOB as a single VOB-level component.

4. Specify where to store the component. You can choose one of the recommended

locations or enter the UNC path of a different location. Click Browse to search

the network for shared resource locations.

5. Identify the PVOB that will store the project information about the component.

Click the arrow to see the list of available PVOBs. Select the PVOB that you

previously created (see “Creating the project VOB” on page 86).

The component is created with an initial baseline that points to the \main\0

version of the component root directory.

To create a VOB and one component in Rational ClearCase LT

(Windows)

1. On the Rational ClearCase LT server host, click Start > Programs > IBM

Rational > IBM Rational ClearCase LT > ClearCase Create VOB. The VOB

Creation Wizard appears.

2. Enter a name for the component. The component name must be unique within

its PVOB. Enter a comment to describe the purpose of the component.

3. Set Create VOB as a single VOB-level component.

4. Select one of the available storage locations for the VOB storage directory. This

page of the wizard lists the VOB storage locations created by your Rational

ClearCase administrator. If only one VOB storage location exists, the VOB

Creation Wizard skips this step and uses that VOB storage location.

To create one component per VOB (Linux and the UNIX system)

1. Make a view by using the cleartool mkview command. For a dynamic view,

also issue the cleartool setview command. For example:

cleartool mkview –tag myview /net/host2/view_store/myview.vws

cleartool setview myview

2. Use the cleartool mkvob command to create a VOB. For example:

cleartool mkvob –nc –tag /vobs/testvob1 /usr/vobstore/testvob1.vbs

3. If you are in an MVFS environment and developers use dynamic views,

perform the following steps.

a. Create the VOB mount point to match the VOB tag. For example:

mkdir /vobs/testvob1

b. Mount the VOB. For example:

cleartool mount /vobs/testvob1

4. Do one of the following steps to create the component:

v Issue the cleartool mkcomp command. For example:

cleartool mkcomp –nc –root /vobs/testvob1 testcomp1@/vobs/myproj2_pvob

In this example, the mkcomp command creates a component named

testcomp1 based on the VOB named testvob1. Although this example uses

different names for the VOB and component, you can use the same name for

both. The component name must be unique within its PVOB. The VOB and

PVOB must be mounted before you issue the command. All projects that use

the myproj2_pvob PVOB can access the testcomp1 component.

v Convert an existing VOB into a component by using the Rational ClearCase

Project Explorer. See “To make a VOB into a component” on page 97 for

more information.

90 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To create a component in Rational ClearCase LT (Linux and the

UNIX system)

1. Make a view and change to the directory. For example:

cleartool mkview –stgloc dev_views ~/chris_snap_view

cd ~/chris_snap_view

2. Use the cleartool mkvob command to create a VOB. For example:

cleartool mkvob –nc –tag /testvob1 –stgloc vobstore

3. Issue the cleartool mkcomp command. For example:

cleartool mkcomp –nc –root testvob1 testcomp1@/myproj2_pvob

Creating the project

You can create a project by using the Project Explorer and the New Project Wizard.

For information on creating a project from the command-line interface (CLI), see

the cleartool mkproject, mkstream, and mkfolder reference pages.

To create a project

1. Start Project Explorer (see “To start Project Explorer” on page 88).

2. The left pane of the Project Explorer lists root folders for all PVOBs in the local

Rational ClearCase domain.

Product Note: On the Rational ClearCase LT server, there is only one PVOB.

Each PVOB has its own root folder. The root folder is created using the name of

the PVOB. The folder Components contains entries for each component in the

PVOB. Folders can contain projects and other folders. Select the root folder for

the PVOB that you want to use for storing project information.

3. Click File > New > Folder to create a project folder. You do not need to create

a project folder, but it is a good idea. As the number of projects grows, project

folders are helpful in organizing related projects.

4. In the left pane, select the project folder or root folder. Click File > New >

Project. The New Project Wizard appears.

5. In the New Project Wizard, enter a descriptive name for the project and provide

a comment to describe the purpose of this project.

v Enter a name for the project integration stream or accept the default name

(project-name_Integration).

v Select the type of project to create. A traditional parallel development project

lets users create multiple streams so that developers can have private and

shared work areas. A single-stream project contains only one stream, the

integration stream. Users cannot create development streams in a

single-stream project. See “Choosing a stream strategy” on page 34 for

information about single-stream and multiple-stream projects.
6. Indicate whether you want to create the project based on an existing project.

Because you are creating a project from scratch, click No.

7. Choose the baselines that the project will use. These baselines are either the

foundation baselines upon which all work within the project is built or the

baselines from which other projects start.

a. Click Add to open the Add Baseline window. In the Component list, select

one of the components that you previously created.

v On Windows systems, click Change > All Streams.

v On Linux and the UNIX system, click the arrow at the end of the From

Stream field and set All Streams.

The component initial baseline appears in the Baselines list.

Chapter 6. Setting up the project 91

b. Select the baseline.

c. Set Allow project to modify the component unless you want the

component to be read-only. (See “Identifying read-only components” on

page 33 for information on when you may want to use read-only

components.)

d. Click OK. The baseline now appears in the list. Continue to use the Add

Baseline window until the project contains its full set of foundation

baselines, including the baseline for the component that stores the project

composite baseline.
8. Specify the development policies to enforce for this project. Set the check boxes

for the policies that you want to enforce. See Chapter 4, “Setting policies,” on

page 63 for information about each policy.

9. Indicate whether to configure the project to work with the UCM integration

with Rational ClearQuest. To enable the project to work with Rational

ClearQuest, click Yes, use the following ClearQuest connection and, in

ClearQuest Link, select the database set (connection) and Rational ClearQuest

user database that you have set up to use with this project. You are asked to

authenticate with your Rational ClearQuest user name and password. See

“Enabling use of the UCM integration with Rational ClearQuest” on page 100

for details about the integration.

You can click Policies to set UCM policies related to the integration or access

the Policies page of the project to set them after the project is created.

Setting a baseline naming template

UCM lets you define a template for implementing a baseline naming convention

within a project. The template can include any of the following tokens:

v Project

v Component

v Stream

v Date

v Time

v User

v Host

v Basename

Basename refers to a name that you specify.

If you do not specify a baseline naming template, the basename is used to name

new baselines. When necessary, a numeric identifier is appended to the baseline

name to make it unique.

During deliver operations, a baseline is created in the source stream. When naming

this baseline, the following format is used in place of the basename token:

deliverbl.source-stream-name.date.unique-identifier

For information about using a baseline naming convention, see “Defining a

baseline naming convention” on page 52.

To set a baseline naming template: Use the –blname_template option with the

cleartool mkproject or chproject command to set a template. For example:

cleartool chproject -blname_template project,component,date mck_proj1

This example sets a template that uses the project name, component name, and

date in all baseline names created in the mck_proj1 project. Use commas to

separate the tokens in the command-line entry. When you create baselines, the

92 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

commas are replaced with underscores. See IBM Rational ClearCase Command

Reference for details about using chproject and mkproject.

Defining promotion levels

Five baseline promotion levels are provided. You can keep some or all of them,

and you can define your own promotion levels. Use the Project Explorer to define

the promotion levels. For information on promotion levels, see “Identifying

promotion levels to reflect state of development” on page 52.

To define the promotion levels that your project uses:

1. In the Project Explorer, select the PVOB root folder that contains your project,

and then click Tools > Define Promotion Level. All projects that use that

PVOB have access to the same set of promotion levels.

2. In the Define Promotion Levels window, to remove an existing promotion level,

select it and click Remove. To change the order of promotion levels, select a

promotion level and use the Move Up or Move Down buttons.

3. To add a new promotion level, click Add. The Add Promotion Level window is

displayed. Enter the name of the new promotion level and click OK. The new

promotion level appears in the list of promotion levels in the Define Promotion

Levels window. Move it to the desired place in the order.

4. When you finalize the set and order of promotion levels, select one to be the

initial promotion level for new baselines. The initial promotion level is the level

assigned by default when you create a baseline.

For information on defining promotion levels from the CLI, see the cleartool

setplevel reference page.

Creating an integration view

When you create a project, the project integration stream is created for you. To see

elements in the project and make changes to the project shared elements, you need

an integration view which is attached to the project integration stream. Use the

Project Explorer to create an integration view. The following kinds of views are

supported:

v Dynamic views, which use the multiversion file system (MVFS) to provide

immediate, transparent access to files and directories stored in VOBs. On

Windows systems, a dynamic view is mapped to a drive letter in Windows

Explorer.

v Snapshot views, which copy files and directories from VOBs to a directory on

your computer.

Product Note: Rational ClearCase LT supports only snapshot views.

If the integration view is a dynamic view, you ensure that you always see the

correct version of files and directories that developers deliver to the integration

stream. With a snapshot view, you have to perform an update operation to copy the

latest delivered files and directories to your computer. For more information about

dynamic and snapshot views, see Developing Software online help.

To create an integration view

1. In the Project Explorer, navigate to the integration stream by moving down the

object hierarchy:

a. Root folder

b. Project folder

c. Project

Chapter 6. Setting up the project 93

d. Stream
2. Select the integration stream and click File > New > View.

On the Windows system, the View Creation Wizard is displayed. On Linux and

the UNIX system, the Create View window is displayed.

3. Accept the default values to create an integration view attached to the

integration stream. By default, the View Creation Wizard and the Create View

window use this convention for the integration view name:

username_project-name_int

Creating and setting an activity in the integration stream

(Linux and the UNIX system only)

Before you can add elements to the integration stream, you need to create and set

an activity.

To create and set an activity (Linux and the UNIX system)

1. Set your integration view if it is a dynamic view. For example:

cleartool setview kmt_Integration

If your integration view is a snapshot view, change directory to it.

2. Issue the cleartool mkactivity command. For example:

cleartool mkactivity –headline “Create Directories”

create_directories

The Rational ClearCase GUI tools use the name specified with –headline to

identify the activity. The last argument, create_directories, is the

activity-selector. Use the activity-selector when you issue cleartool commands.

3. By default, when you make an activity with the cleartool mkactivity command,

your view is set to that activity. Your view is not set to an activity if you create

multiple activities in the same command line or if you specify a stream with

the –in option. If you need to set your integration view to the activity, use the

cleartool setactivity command. For example:

cleartool setactivity create_directories

Creating the directory structure

If you create the project from scratch, you need to create the directory elements

within the project components. This action implements the directory structure that

you define during the planning phase. See “Defining the directory structure” on

page 33.

To add a directory element to a component (the Windows

system)

1. In Windows Explorer, navigate to the integration view. Double-click the

component to display its contents. If the component is in a VOB that you

created to store multiple components, the component appears as a folder under

the VOB.

2. Create a folder.

3. Right-click the folder and click ClearCase > Add to Source Control.

4. When prompted, specify an activity to be associated with the addition of the

new directory element.

For more information about creating directory and file elements, see Developing

Software online help and the mkelem reference page.

94 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To add a directory element to a component (Linux and the UNIX

system)

1. With your integration view set to an activity (see “Creating and setting an

activity in the integration stream (Linux and the UNIX system only)” on page

94), navigate to the component. If the component is in a VOB that you created

to store multiple components, the component appears as a directory under the

VOB. For example:

cd /vobs/testvob13/libs

2. Check out the component root directory. For example:

cleartool co –nc .

3. Issue the cleartool mkelem command. For example:

cleartool mkelem –nc –eltype directory design

This example creates a directory element called design. By default, the mkelem

command leaves the element checked out. To add elements, such as

subdirectories, to the directory element, you must leave the directory element

checked out.

4. When you finish adding elements to the new directory, check it in. For

example:

cleartool ci –nc design

5. When you finish creating directory elements, check in the component root

directory. For example:

cleartool ci –nc .

For more information about creating directory and file elements, see Developing

Software online help and the mkelem reference page.

Importing directories and files from outside Rational

ClearCase version control

If you have a large number of files and directories that you want to place under

Rational ClearCase version control, you can speed the process by using the

clearexport and clearimport command-line utilities. These utilities allow you to

migrate an existing set of directories and files to a Rational ClearCase repository

from another version control software system, such as SourceSafe, RCS, or PVCS.

You have the following options:

v Migrate source files directly into a component (see “To migrate source files into

a component” on page 95).

v Use clearexport and clearimport on VOBs, and then convert the VOBs to

components. For details on converting VOBs into components, see “Creating a

project based on an existing Rational ClearCase configuration” on page 97.

v Migrate directories and flat files that are not currently under any version control.

Use the clearfsimport command-line utility. Run clearfsimport from within a

UCM view to import directories and files directly onto a stream. You can then

create a baseline in the stream without having to label the versions. See the

clearfsimport reference page for details.

v On Windows systems, use the Import Wizard, a graphic user interface (GUI) that

you can use as an alternative to the clearexport and clearimport commands.

For details on using clearexport and clearimport, see the IBM Rational ClearCase

Administrator’s Guide and the clearexport and clearimport reference pages.

To migrate source files into a component

1. Run clearexport to generate a data file from your source files.

Chapter 6. Setting up the project 95

2. Create and set a non-UCM view. On Windows systems, use the View Creation

Wizard. To start the View Creation Wizard, from Rational ClearCase Explorer

click Base ClearCase > Create View. On Linux and the UNIX system, use the

cleartool mkview and setview commands.

3. In the view context, run clearimport to populate the component with the files

and directories from the data file.

4. In the component, create a baseline from a labeled set of versions. If the

versions that you want to include in the baseline are not labeled, create a label

type and apply it to the versions.

Making baselines of newly populated components

After you create the directory structure and import files (see “Creating the

directory structure” on page 94 and “Importing directories and files from outside

Rational ClearCase version control” on page 95), create new baselines that select

those directory and file elements for each of the components to which you added

elements. For more information, see “Creating a new baseline” on page 114.

If you use pure composite baselines, use these new baselines to create the

dependency relationships for the composite baselines that you want to be

consumed in the project. For more information, see “Creating the dependency

relationships for composite baselines in the project.”

Creating the dependency relationships for composite

baselines in the project

In the components that you created without a VOB root directory (see “Creating

components for storing baseline dependencies” on page 87), add as member

baselines the newly created baselines for the components in your project that

group files and directories. This creates composite baselines for the project. When a

member baseline is added to a component, a dependency reference is added to

that component and a new composite baseline is made. If you are making pure

composite baselines that select other pure composite baselines, start making the

composite baselines at the lowest level in the hierarchy that you are defining.

A sound strategy is to maintain the pure composite baselines in a bootstrap project.

You can create a pure composite baseline that represents the project by selecting

the lower level pure composite baselines or the latest baseline from each

component that the project will use.

To create a composite baseline

1. In the Project Explorer, right-click the project integration stream or

feature-specific development stream and click Edit Baseline Dependencies.

2. The Edit Baseline Dependencies window displays a list of all components that

the project uses. Identify the component that you created without a VOB root

directory and to which you will add the member baselines (see “To create a

component without a VOB root directory” on page 87). Drag the other

components onto the component that will contain the baseline dependencies.

3. Click OK. The Create Baseline Dependencies window is displayed.

4. Enter the name in the Base Name (Windows) or Baseline Title (Linux and the

UNIX system) field that you want to use for the baselines that UCM creates for

these components. If you have a baseline naming template set for the project,

the Template Name field shows the name that will be used. If the template

96 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

does not include the Basename token, or if no template is set, the Base Name

or Baseline Title field does not appear in the Create Baseline Dependencies

window.

5. Click OK.

Recommending a baseline for new components

Recommend a new baseline that selects those directory and file elements to be

used in the project. If you use pure composite baselines, this can be one baseline

that you want all developers to use. Developers who join the project at the project

level or at the feature-specific development stream populate their development

streams with the versions that are identified by the recommended baseline. For

more information, see “Recommending the baseline” on page 118.

Creating a project based on an existing Rational ClearCase

configuration

If you have existing VOBs, you can convert them or their directories into

components so that you can include them in projects. You can set up a project

based on existing VOBs.

Creating the PVOB from an existing Rational ClearCase

configuration

On the Windows system, use the VOB Creation Wizard to create the PVOB (see

“To create a PVOB (the Windows system)” on page 86). In Step 3, if you currently

use an administrative VOB, select it in the list. An AdminVOB hyperlink is made

between the PVOB and the administrative VOB. When you create components,

they use the existing administrative VOB. If you do not currently use an

administrative VOB, select none.

On Linux and the UNIX system, use the cleartool mkvob command (see “To create

a PVOB (Linux and the UNIX system)” on page 86). If you currently use an

administrative VOB, use the cleartool mkhlink command to create an AdminVOB

hyperlink between the PVOB and the administrative VOB. When you create

components, they then use the existing administrative VOB.

If the project uses pure composite baselines, create components without a VOB root

directory. For more information, see “Creating components for storing baseline

dependencies” on page 87.

Making components from existing VOBs

You can do any of the following:

v Make a VOB into a component

v Make a directory in a VOB into a component

You may want to organize the contents of a VOB into multiple components.

To make a VOB into a component

1. In the Project Explorer, select the PVOB. Do one of the following:

v On the Windows system, click Tools > Import > VOB as Component.

v On Linux and the UNIX system, click Tools > Import > Import VOB.

The Import VOB window is displayed.

Chapter 6. Setting up the project 97

2. In the Available VOBs list, select the VOB that you want to make into a

component. Click Add to move the VOB to the VOBs to Import list. You can

add more VOBs to the VOBs to Import list. If you change your mind, you can

select a VOB in the VOBs to Import list and click Remove to move it back to

the Available VOBs list.

3. When you are finished, click Import.

To make a directory tree within a VOB into a component

1. In the Project Explorer, right-click the PVOB folder and click Import > VOB

Directory as Component.

2. In the Import VOB Directory as Component window, select a view from the

View list; select the VOB that contains the directory from the VOB list; select

the directory from the Root Directory list; and specify a name for the

component.

The new component contains the directory and all its subdirectories and files.

The component root directory must be at or directly below the VOB root

directory. If the component root directory is at the VOB root directory, that VOB

cannot store multiple components.

Making a baseline from a label

After you convert an existing VOB or one of its directory trees into a component,

to access the directories and files in that component, you must create a baseline

from the set of versions identified by a label type.

To create a baseline by label type

1. Create and apply a label type.

On the Windows system, if the set of versions that you want to use are not

already labeled, use the Apply Label Wizard to make and apply a label type. To

start the Apply Label Wizard, do one of the following steps:

v Click Start > Programs > IBM Rational > IBM Rational ClearCase >

Apply Label Wizard

v Enter clearapplywizard at the command prompt
On Linux and the UNIX system, if the set of versions that you want to use are

not already labeled, use the cleartool mklbtype and mklabel commands to

create and apply a label type. For example:

% cleartool mklbtype –c “label for release 2” REL2

Created label type “REL2”.

% cleartool mklabel -recurse REL2 .

Created label “REL2” on “.” version “/main/5”.

Created label “REL2” on “./src” version “/main/6”.

Created lable “REL2” on “./src/Makefile” version “/main/2”.

The –recurse option causes the label to be applied to all versions at or below

the current working directory.

2. In the Project Explorer, select the PVOB. Do one of the following:

On Linux and the UNIX system, click Tools > Import > Import Label. Step 1

of the Import Label Wizard appears.

On the Windows system, click Tools > Import > Label as Baseline.

3. In the Available Components list, select the component that contains the label

from which you want to create a baseline. Click Add to move that component

to the Selected Components list. If you change your mind, select a component

in the Selected Components list and click Remove to move the component

back to the Available Components list.

98 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

4. In Step 2 on page 98, select the label type that you want to import, and enter

the name of the baseline that you want to create for the versions identified by

that label type. Then select the baseline promotion level.

Note: You cannot import a label type from a global label type definition.

Creating the project

Use the New Project Wizard to create the project. For more information, see

“Creating the project” on page 91.

Finishing the project configuration

To finish configuring the project that is based on an existing Rational ClearCase

configuration, perform the following operations:

v Create an integration view. For more information, see “Creating an integration

view” on page 93.

v If the project is using pure composite baselines, create the dependency

relationships for those baselines. For more information, see “Creating the

dependency relationships for composite baselines in the project” on page 96.

v Recommend a baseline that developers use in the project. For more information,

see “Recommending a baseline for new components” on page 97.

Creating a project based on an existing project

As you create new projects, you may need to create new instances of existing

projects. For example, suppose you have released version 3.0 of the Webotrans

project and are planning for version 3.1. You anticipate that version 3.1 will use the

same components as version 3.0. Therefore, you want to use the latest baselines in

the version 3.0 components as the foundation baselines for version 3.1

development. A good strategy is to use a bootstrap project. See “Bootstrap

projects” on page 146.

Capturing final baselines in a composite baseline

If the existing project contains numerous components, you may want to create a

pure composite baseline that selects the final baselines of those components before

you create the new project. This composite baseline serves as a single starting point

for teams that want to start their work from the final approved baselines of the

existing project.

To create a pure composite baseline from existing approved

baselines

1. Create a component that does not have a root directory in a VOB. See

“Creating components for storing baseline dependencies” on page 87.

2. Add the initial baseline of the component to the integration stream.

3. In the component, create a composite baseline that selects baselines of all other

components in the project. See “Creating the dependency relationships for

composite baselines in the project” on page 96.

4. Recommend the composite baseline. See “Recommending the baseline” on page

118.

Creating the project from another project

If your project is a new instance of an existing project and uses the same

components as the existing project, do not create a new PVOB for this project.

Chapter 6. Setting up the project 99

Continue to use the existing PVOB. You can create the project based on the existing

PVOB (see “To create a project based on an existing project” on page 100).

To create a project based on an existing project

1. Start the New Project Wizard to create the project (see “Creating the project” on

page 91).

2. In Step 2 of the wizard, set Yes to indicate that the project begins from the

baselines in an existing project. Then navigate to the project that contains those

baselines. For example, the new project is based on the baselines in the

OM_proj1.0_Integration stream.

3. Step 3 lists the latest baselines in the project that you select in Step 2. If you

created a pure composite baseline to capture the final approved baselines in the

existing project, select it. You can add baselines from components that are not

part of the existing project by clicking Add to open the Add Baseline window.

Similarly, you can remove a baseline by selecting it and clicking Remove.

4. Finish the remaining steps in the wizard (see “Creating the project” on page

91).

Creating an integration view

When you create a new project, a new integration stream is created for you.

Therefore, you need to create a new integration view to access elements in the

integration stream. Create an integration view as described in “Creating an

integration view” on page 93.

Enabling use of the UCM integration with Rational ClearQuest

Before you can connect a project to a Rational ClearQuest user database, you must

set up the database to use a UCM-enabled schema and have the required

credentials to access the user database. See Chapter 5, “Setting up a Rational

ClearQuest user database for UCM,” on page 75. After you set up the Rational

ClearQuest user database, you can enable the project for use with a Rational

ClearQuest user database.

To enable a project to work with a Rational ClearQuest user

database

 For a current project:

1. In the left pane of the Project Explorer, right-click the project and click

Properties to display its property sheet.

2. Click the ClearQuest tab and then set Project is ClearQuest-enabled.

On Windows systems, Link to the ClearQuest User Database is seeded with a

name. The Rational ClearQuest Schema Repository window appears with the

connection corresponding to that user database selected.

3. Select the user database that you want to link to the project. The first time that

you enable a project, the Rational ClearQuest Login window is displayed.

4. Enter your credentials (user name, password, and the name of the Rational

ClearQuest user database to which you are linking the project). For information

on credentials, see “Creating users and adding credentials” on page 82. Click

Next. And click OK.

100 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

5. To set the Rational ClearQuest development policies that you want to enforce,

click Policies and ClearQuest. See “Policies for the UCM integration with

Rational ClearQuest” on page 69 for a description of these policies. Click OK

when you are finished.

 For a new project:

 If you are creating a new project, you can enable the project to work with Rational

ClearQuest by setting Yes, use the following ClearQuest connections and

selecting the connection and user database in Step 5 of the New Project Wizard.

For information about the procedure to create a new project, see “Creating the

project” on page 91.

Changing the project to a different Rational ClearQuest user

database

After you enable a UCM project to work with a Rational ClearQuest user database,

you may decide to link the project to a different user database. If no activities have

been created, you can switch databases by selecting a different one on the

ClearQuest tab of the project property sheet.

Migrating activities

If your project contains activities when you enable it to work with a Rational

ClearQuest user database, the UCM integration with Rational ClearQuest creates

records for each of those activities by using the UCMUtilityActivity record type.

To store all of your project activities in records of some other record type, enable

the project when you create it, before team members create any activities. After the

migration is complete, any new activities that you create can link to records of any

UCM-enabled record type.

Setting project policies

A UCM-enabled schema includes policies that you can enable from either Rational

ClearCase or Rational ClearQuest control.

To set policies in Rational ClearCase control

On the ClearQuest page of the project Policies window, set the check boxes next to

the policies to enable them. Clear the check box to disable the related policy.

To start a Rational ClearQuest client

1. Do one of the following:

v To start the Rational ClearQuest Web client, from your internet browser, use

the URL that your project manager supplies. The Rational ClearQuest Web

server displays a Login window.

v To start the Rational ClearQuest for Windows client, on the Windows system,

click Start > Programs > IBM Rational > IBM Rational ClearQuest >

Rational ClearQuest. The client displays a Login window.
2. Enter the credentials that are registered on your system. For more information

about credentials, see “Creating users and adding credentials” on page 82.

To set policies from the Rational ClearQuest client

1. Run the Rational ClearQuest client (see “To start a Rational ClearQuest client”

on page 101).

2. In the Rational ClearQuest client workspace, navigate to and double-click the

UCMProjects query.

Chapter 6. Setting up the project 101

The query displays all UCM-enabled projects that are associated with the

current Rational ClearQuest user database.

3. Select a project from the Results set. The project form appears.

4. On the form, click Actions and select Modify. Set the check boxes for the

policies to be enabled.

Because not all policies are stored in the Rational ClearQuest user database for a

project, you may have to set some policies from Rational ClearCase control. For

descriptions of the policies, see “Policies for the UCM integration with Rational

ClearQuest” on page 69.

Assigning activities

 After you establish policies, you create activities so that work can be assigned and

scheduled.

To create and assign activities in a Rational ClearQuest user

database

1. Start the Rational ClearQuest client (see “To start a Rational ClearQuest client”

on page 101).

2. Log on to the user database connected to the project.

3. Click Actions > New. The Choose a record type window is displayed. Select a

UCM-enabled record type, and click OK.

4. The Submit form appears. Fill in the boxes on each tab. When you finish filling

in the boxes, click OK. The record is created and placed in a Submitted type

state.

5. Run a query and select the record. For example, if the record type is Defect,

you can run the All Defects query.

6. Click Actions > Assign, and select the owner from the Owner list. Click

Apply.

User account profiles must exist in a Rational ClearQuest user database for the

developers to whom you assign activities. See “Creating users and adding

credentials” on page 82 for information about creating user account profiles.

Disabling the link between a project and a Rational

ClearQuest user database

There may be times when you want to disable the link between a project and a

Rational ClearQuest user database.

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

102 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To disable the project and user database link

1. On the ClearQuest tab of the project property sheet, clear Project is

ClearQuest-enabled.

2. Click OK on the ClearQuest tab. The integration disables the link between the

project and the Rational ClearQuest user database. The integration also removes

any existing links between activities and their corresponding Rational

ClearQuest records.

3. Display the project property sheet again, set Project is ClearQuest-enabled,

and select another user database if you want to link the project to a different

user database.

Tip: If you select the same user database that you just unlinked, the integration

creates new Rational ClearQuest records for the project activities; it does

not link the activities to the Rational ClearQuest records with which they

were previously linked.

Fixing projects that contain linked and unlinked activities

After you enable a project to work with Rational ClearQuest, some of the project

activities can remain unlinked to Rational ClearQuest records. Similarly, when you

disable the link between a project and a Rational ClearQuest user database, some

activities may remain linked. The following scenarios can cause your project to be

in this inconsistent state:

v A network failure or a general system crash occurs during the enabling or

disabling operation and interrupts the activity migration.

v The Rational ClearQuest user database can become corrupted, forcing you to

restore a backed-up version of the user database. That version of the user

database is out of sync with the PVOB that contains the project that is linked to

the user database.

v You use the cleartool command-line interface to rename an activity or a project.

When you rename an activity or project from the command-line interface, the

UCM integration with Rational ClearQuest does not update the corresponding

user database record with the name change. As a result, the Rational ClearCase

and Rational ClearQuest objects are not synchronized.

v The project PVOB is in a Rational ClearCase MultiSite configuration, and

unlinked activities were added by a Rational ClearCase MultiSite

synchronization operation to the local PVOB project, which is enabled to work

with Rational ClearQuest.

Detecting unlinked activities

If a developer attempts to take an action, such as modifying an unlinked activity in

an enabled project, the integration displays an error and disallows the action.

Correcting unlinked activities

If the problem is the result of one of the most likely scenarios (see “Fixing projects

that contain linked and unlinked activities” on page 103), use the cleartool

checkvob command with the –ucm option to restore the project to a consistent

state. See IBM Rational ClearCase Administrator’s Guide and IBM Rational ClearCase

Command Reference for details about using this command.

If the problem is caused by Rational ClearCase MultiSite, at the remote site, link

the unlinked activities (see “To link unlinked activities at a remote site” on page

103).

To link unlinked activities at a remote site:

Chapter 6. Setting up the project 103

1. In the Project Explorer, display the project property sheet, and click the

ClearQuest tab.

2. Click Link all unlinked activities mastered at this replica. The integration

checks all of the project activities and links any that are unlinked. The

integration then displays the following summary information:

v Number of activities that had to be linked.

v Number of activities that were previously linked.

v Number of activities that could not be linked because they are not mastered

in the current PVOB replica. In this case, the integration also displays a list

of replicas on which you must run the Link all unlinked activities mastered

at this replica operation again to correct the problem.
3. At each replica on the list described in Step 2, repeat Step 1 and Step 2.

How the UCM integration with Rational ClearQuest is affected

by Rational ClearQuest MultiSite

If you use Rational ClearCase MultiSite to replicate the PVOB and ClearQuest

MultiSite to replicate the Rational ClearQuest user database and schema repository

involved in the UCM integration with Rational ClearQuest, you need to be aware

of several requirements.

v “Replica and naming requirements”

v “Transferring mastership of the project”

v “Linking activities to Rational ClearQuest records” on page 105

v “Changing project policy settings” on page 105

v “Changing the project name” on page 105

Replica and naming requirements

When you set up the UCM integration with Rational ClearQuest, you establish a

link between a project and a Rational ClearQuest user database. If you use Rational

ClearCase MultiSite, the following requirements apply:

v Each site that has a PVOB replica that contains a linked project must have a

replica of the Rational ClearQuest user database to which the project is linked

and the user database schema repository.

v Similarly, each site that contains a linked Rational ClearQuest user database

replica must contain a replica of the PVOB that contains the project to which the

user database is linked.

v The name of the Rational ClearQuest replica must match the name of the PVOB

replica at the same site.

Transferring mastership of the project

Before you enable a project to work with Rational ClearQuest, your current PVOB

replica must master the project. If your replica does not master the project, transfer

mastership of the project by using the multitool chmaster command at the replica

that masters the project.

When you enable the project to work with Rational ClearQuest, the UCM

integration with Rational ClearQuest creates a corresponding project record in the

Rational ClearQuest user database (see “Mapping PVOBs to Rational ClearQuest

user databases” on page 57). The integration assigns mastership of that record to

the current replica of the Rational ClearQuest user database. If a project record

with the same name as the project exists in the Rational ClearQuest user database

when you enable the project, and that project record is not mastered by your

current replica, you must transfer mastership of the project record to your current

replica.

104 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Linking activities to Rational ClearQuest records

If a project contains activities, when you enable that project to work with Rational

ClearQuest, the UCM integration with Rational ClearQuest creates corresponding

Rational ClearQuest records for the activities and links the records to the activities.

The integration cannot link activities that are mastered by remote replicas. See

“Correcting unlinked activities” on page 103 for information about linking

activities that are mastered by a remote replica.

Changing project policy settings

Before you can change a project policy setting from within Rational ClearQuest

control, the Rational ClearQuest project record must be mastered. Similarly, before

you can change a project policy settings from within Rational ClearCase control,

the project object must be mastered. After you change a project policy setting in

the current replica, the new settings do not take effect in streams in sibling replicas

until you synchronize the current replica with those replicas. See the IBM Rational

ClearCase MultiSite Administrator’s Guide for information about synchronizing

replicas.

Changing the project name

The integration links a project name to the name field in the corresponding

Rational ClearQuest project record (see “Naming projects that are linked to same

user database” on page 58). If you change the project name in the Rational

ClearCase graphic user interface (GUI), the integration makes the same change to

the name field in the corresponding Rational ClearQuest project record. Similarly, if

you change the name in the Rational ClearQuest user database, the integration

makes the same change to the project name in the Rational ClearCase repository.

Before you can change the project name in a Rational ClearCase MultiSite

environment, the project record and the project object must both be mastered.

Restriction: Change the project name only by using a GUI, such as Project

Explorer. If you change the project name by using the command-line

interface, the integration does not make the same change to the

corresponding project record.

Note also that the project name cannot be the same as a folder name

or a stream name.

Working with IBM Rational Suite (Windows)

If you are using UCM with IBM Rational Suite, you can store Rational RequisitePro

projects, Rational Rose and XDE™ models, and Rational Test datastores in UCM

components and include them in baselines. To enable this integration, use the

Rational Administrator GUI to create and configure a Rational project. A Rational

project associates your UCM project with a RequisitePro® project, Rose models,

and Rational Test datastores.

Chapter 6. Setting up the project 105

Creating a development stream for testing baselines

 When you make a new baseline, lock the integration stream so that you can build

and test a static set of files. Otherwise, developers can inadvertently cause

confusion by delivering changes while you are building and testing. Locking the

integration stream for a short period of time is acceptable; locking the integration

stream for several days can result in a backlog of completed but undelivered

activities.

To avoid locking out developers for a long period of time, you may want to create

a development stream and use it for extensive testing of baselines (see “To create a

development stream” on page 106). If your project uses feature-specific

development streams, you may want to create a testing stream for each

feature-specific development stream so that you can test the baselines created in

those streams.

If the development stream is configured to be read-only, you can build and test the

new baselines, and developers can deliver changes to the integration stream

without being concerned about interfering with the building and testing process.

For information on testing baselines, see “Testing the baseline” on page 116.

To create a development stream

1. In Project Explorer, right-click the integration stream, and click Create Child

Stream from the pop-up menu. The Create a Development Stream window

appears.

2. If you want to disallow changes to be made in the testing stream, set Make

Stream read only. If you set this option, you cannot fix defects discovered in

the baseline in this stream. Instead, the developers responsible for the defects

would need to make the fixes in their development streams and deliver them

to the feature-specific development stream.

3. By default, the set of recommended baselines is used when creating a

development stream. Because the new baseline has not been tested extensively,

you probably have not yet promoted it to the level associated with

recommended baselines. To create the development stream with baselines other

than the recommended baselines, click Advanced Options. The Change

Baseline window appears.

4. Select the component that contains the baseline that you want to test. Click

Change. A second Change Baseline window appears, listing all baselines for

the component.

5. Select the baseline that you want to test, and click OK. If you need to test the

baseline of another component, select it in the first Change Baseline window

and repeat the process. When you are finished, click OK in the first Change

Baseline window.

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

106 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

6. In the Create a Development Stream window, set Prompt me to create a View

for this stream. Click OK.

The View Creation Wizard (the Windows system) or Create View window

(Linux and the UNIX system) appears.

7. Complete the steps of the View Creation Wizard or the fields of the Create

View window to create a view for the development stream.

Creating a feature-specific development stream

Feature-specific development streams allow you to isolate work.

About creating feature-specific development streams

The basic UCM process uses the integration stream as the project sole shared work

area. You may choose to organize your project into small teams of developers

where each team develops a specific feature. This type of organization is supported

by feature-specific development streams.

Create a development stream to serve as the shared work area for each team of

developers. The developers who work on that feature create their own

development streams based on the recommended baselines in the feature-specific

development stream. See “Choosing a stream strategy” on page 34 for additional

information about feature-specific development streams.

To create a feature-specific development stream

1. In Project Explorer, right-click the parent stream, and select Create Child

Stream from the pop-up menu. The Create a Development Stream window

appears.

2. By default, the set of recommended baselines is used when creating a

development stream. To create the development stream with baselines other

than the recommended baselines, click Advanced Options and select the

baselines from the Change Baseline window.

3. In the Create a Development Stream window enter a name and description for

the new stream. Set Prompt me to create a View for this stream. Click OK.

On the Windows system, the View Creation Wizard is displayed.

On Linux and the UNIX system, the Create View window is displayed.

4. Complete the steps of the View Creation Wizard or the Create View window to

create a view for the development stream.

5. In Project Explorer, right-click the feature-specific development stream, and

select Recommend Baselines.

6. In the Recommended Baselines window, click Add to display the Add Baseline

window. Select the baselines that you want to recommend to developers who

will work on this feature. When developers create their own development

streams, those streams will be based on the recommended baselines. When you

finish selecting the baselines, click OK in the Recommended Baselines window.

Chapter 6. Setting up the project 107

108 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 7. Managing the UCM project

This chapter describes tasks involved in maintaining a UCM project.

About managing a project

After you create and set up a project, developers join the project, work on

activities, and deliver completed activities to the integration stream or

feature-specific development stream. In your role as integrator, you need to

maintain the project so that developers do not get out of sync with each other’s

work. The following sections describe project maintenance tasks:

v “Adding components”

v “Building components” on page 112

v “Creating a new baseline” on page 114

v “Testing the baseline” on page 116

v “Recommending the baseline” on page 118

v “Resolving baseline conflicts” on page 120

v “Monitoring project status” on page 122

v “Cleaning up the project” on page 125

Adding components

Over time, the scope of your project typically broadens, and you may need to add

components to a stream and to projects (see “To add a component to a stream” on

page 110). Adding a component to a stream requires that you rebase to the baseline

of the new component after the component is added.

By default, a component is added to the project as read-only. To allow developers

to deliver changes for that component, make the component modifiable (see “To

make a component modifiable within the project” on page 110).

Before you can access the component that you added to a stream from a view that

is attached to the stream, you must synchronize the view with the new

configuration (see “To synchronize a view with a new configuration” on page 110).

To enable a child stream to access a modifiable component that you added to a

parent stream, you must do the following tasks:

v Synchronize the child stream with the new set of modifiable components in the

project (see “To synchronize a child stream with project modifiable components”

on page 110).

v Synchronize the child stream view with the new configuration of the parent

stream (see “To synchronize a child stream view with new parent stream

configuration” on page 111).

If snapshot views are attached to a stream to which you added a component, you

need to edit the view load rules to include the components that you add to the

stream (see “To edit the view load rules” on page 111). The load rules of a

snapshot view specify which components are loaded into the view. In addition,

you need to know whether any developers working on the project use snapshot

views for their development views. When a developer who uses a snapshot view

© Copyright IBM Corp. 1992, 2006 109

rebases to a baseline that contains a new component, the snapshot view config

spec is updated, but the view load rules are not updated. When you add a

component, take the following actions for developers who use snapshot views:

v Notify the developers that they need to rebase their development streams to the

baseline of the newly added component.

v Instruct the developers to update the load rules for their development views to

load the newly added component.

To add a component to a stream

 1. Start Project Explorer (see “To start Project Explorer” on page 88).

 2. In the right pane of the Project Explorer, right-click the stream and click

Properties to open the stream Properties window.

 3. Click the Configuration tab, and then click Add. The Add Baseline window

opens.

 4. Do one of the following steps:

v On Linux and the UNIX system, click the arrow at the end of the From

Stream box and either select a stream from the tree hierarchy or click All

Streams.

v On the Windows system, click Change > All Streams or Change > Browse

to select the stream that contains the component baseline you want to add.
 5. In the Component list, select the component that you want to add. The

component baselines appear in the Baselines list.

 6. In the Baselines list, select the baseline that you want to add to the project.

 7. Click OK. The Add Baseline window closes, and the baseline that you chose

appears on the Configuration page.

 8. Click OK to close the stream Properties window.

The Rebase Stream Preview window opens. To modify the stream

configuration to include the new foundation baseline, UCM needs to rebase

the stream.

 9. Click OK in the Rebase Stream Preview window.

10. Click Complete to finish the rebase operation.

To make a component modifiable within the project

1. In the Project Explorer, select the project, and click File > Policies.

2. In the Components tab, click the check box next to the component.

3. Click OK.

To synchronize a view with a new configuration

1. In the Project Explorer, select the stream that contains the component that you

added, and click File > Properties.

2. Click the Views tab. Select the view and click Properties.

3. On the General tab, click Synchronize with stream.

To synchronize a child stream with project modifiable

components

1. In the Project Explorer, select the child stream and click File > Properties.

2. On the General tab, click Synchronize with project.

110 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To synchronize a child stream view with new parent stream

configuration

1. In the Project Explorer, select the child stream and click File > Properties.

2. Click the Views tab. Select the view and click Properties.

3. On the General tab, click Synchronize with stream.

To edit the view load rules

1. In the Project Explorer, select the stream to which you added a component, and

click File > Properties to display the stream property sheet.

2. In the property sheet, click the Load Rules tab.

3. Select the component or components that you added to the stream.

4. Click Add. Click OK to close the property sheet.

Element relocation

After you create components and add them to a UCM configuration, you should

not change the configuration. Change flow and integration in UCM depend on

stable components. If you absolutely must relocate directory and file elements, you

can run a UCM-supplied script mkelem_cpver.pl. The script must be run in a

strictly-controlled situation to prevent undesired configuration changes. You must

use ratlperl to run the script. The script does the following operations:

v Copies directory and file elements (one source version to one target version)

within a VOB or between VOBs. New elements are created in the target

directory with the view’s version of the original element from the source

directory.

v Uncatalogs the elements in the source directory.

v Preserves the history of the source elements to allow work to continue in other

streams.

The script does not do the following operations:

v Retain source history in the target version. (A comment attached to the target

version records the path of the source version for historical purposes.)

v Roll back when errors are encountered. (No support is provided for undoing the

operation. The project manager must fix any errors.)

v Integrate changed content in other streams. If you deliver or rebase content

between streams, be careful to distinguish between the previous and current

names of the relocated elements.

To relocate elements

1. In a shell or command prompt window, change directory to a view that is

attached to a stream that contains the components whose elements you want to

relocate.

2. If the view is a snapshot view, update it.

3. Set the view to an activity that you reserve for this operation.

4. Run the script and specify the source path and target path for the relocation.

For example:

cleartool mkact -head "Move XML utility code to libks" my-app-xml-move

On the UNIX system:

Chapter 7. Managing the UCM project 111

rational-home-dir/common/bin/ratlperl ccase–home–dir/etc/utils/mkelem_cpver.pl \

/vobs/app/xml /vobs/lib/ks

On Linux and the Windows system:

rational-home-dir/common/ratlperl.exe ccase–home–dir/etc/utils/mkelem_cpver.pl ^

/vobs/app/xml /vobs/lib/ks

The xml directory and all its contents are copied to the new location under the ks

directory. If the script encounters a hard link, it creates a separate element.

After the relocation, if developers try to deliver or rebase operations that involve a

relocated element, they see warning messages that the element is not visible. Any

changes that are made to the source elements must be manually merged from the

source location to the target elements in the new location.

Building components

 A responsibility of the project integrator is to build and test components to ensure

that the changes to the software are stable and meet the goals of the project before

the changes are made available in new baselines.

About building components

Before you make new baselines in a stream, build the components by using the

current baselines and any work that developers have delivered to the stream since

you created the current baselines. If the build succeeds, you can make baselines

that select the latest delivered work. Building components involves the following

tasks:

v Locking the stream

v Finding remote deliver operations

v Completing remote deliver operations

v Undoing bad deliver operations

v Building and testing the components

Locking the shared stream

Before you build components in the integration stream or feature-specific

development stream, lock the stream to prevent developers from delivering work.

This ensures that you are dealing with a static set of files.

Note: It is possible that a developer could be in the process of completing a

deliver operation when you lock the stream. This scenario could result in

some files associated with an activity not being checked in, which, in turn,

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

112 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

could break your build operations and produce bad baselines. You may

want to create a script that checks for deliveries in progress, and run the

script before you lock the stream.

To lock a stream

1. In the Project Explorer, select the stream.

2. Click File > Properties to display the stream property window.

3. Click the Lock tab.

4. Click Locked and then click OK.

Finding work that is ready to be delivered

Before you build components, you may need to complete some deliver operations.

In most cases, developers complete their deliver operations. However, in a Rational

ClearCase MultiSite configuration in which the target stream is mastered at a

different replica than the developer’s source stream, the developer cannot complete

deliver operations. When such a stream mastership situation is detected, the

deliver operation is made a remote deliver operation.

In a remote deliver operation, the deliver operation starts but is left in the posted

state. It is up to you, as integrator, to find and complete deliver operations in the

posted state (see “To find all deliver operations that are in the posted state”).

Developers who have deliver operations in the posted state cannot deliver from or

rebase their source development streams until you complete their deliver

operations (see “To complete remote deliver operations for a development stream”)

or cancel them (see “Undoing a deliver operation”).

Product Note: Rational ClearCase LT does not support Rational ClearCase

MultiSite.

To find all deliver operations that are in the posted state

1. In the Project Explorer, select the project.

2. Click Tools > Find Posted Deliveries. If the project contains posted deliveries,

the Find Posted Deliveries window appears and lists all streams within the

project that contain deliver operations in the posted state. For each posted

deliver operation, the window shows the source stream and the target stream.

3. To find posted deliver operations for a specific target stream, select the stream

and click Tools > Find Posted Deliveries. The Find Posted Deliveries window

lists the source streams that have posted deliver operations for the target

stream. The Find Posted Deliveries window lists posted deliver operations only

for source streams that are direct children of the target stream.

To complete remote deliver operations for a development stream

1. Find the list of streams that contain deliver operations in the posted state (see

“To find all deliver operations that are in the posted state” on page 113).

2. In the Find Posted Deliveries window, select the development stream from the

list.

3. Click Deliver. The Deliver window opens. Click Resume to resume the deliver

operation. Click Cancel to cancel the deliver operation. See Developing Software

online help for details on completing the deliver operation.

Undoing a deliver operation

At any time before developers complete the deliver operation, they can back out of

it and undo any changes made; but if they check in their versions to the

Chapter 7. Managing the UCM project 113

integration view, they cannot undo the changes easily. When this happens, you

may need to remove the checked-in versions by using the cleartool rmver –xhlink

command.

Warning: The rmver command erases part of your organizational development

history, and it may have unintended consequences. Therefore, be very

conservative in using this command, especially with the –xhlink option.

See the rmver reference page in the IBM Rational ClearCase Command

Reference for details.

Removing a version does not guarantee that the change is really gone. If a

successor version was created or if the version was merged before you removed

the version, the change still exists. You may need to check out the file, edit it to

remove the change, and check the file back in.

Building and testing the components

After you lock the stream and complete any outstanding deliver operations, you

are ready to build and test the project executable files to make sure that the

changes delivered by developers since the last baseline do not contain any bugs.

For information on performing builds, see IBM Rational ClearCase Guide to Building

Software. Because you lock the stream when you build and test in it, it is better to

use a separate development stream for extensive testing of new baselines. For

information about using a development stream for testing new baselines, see

“Testing the baseline” on page 116. Perform only quick validation tests in the

current stream so that it is not locked for an extended period of time.

Creating a new baseline

 Project integrators are responsible for making baselines before they recommend

them.

About making a baseline

As developers deliver work to the integration stream or feature-specific

development stream, it is important that you make new baselines frequently to

record the changes. Developers can then rebase to the new baselines and stay

current with each other’s changes. Before you make the baseline, make sure that

the stream is still locked so that developers cannot deliver work to the stream.

By default, all activities modified since the last baseline was made are included in

the new baseline. There might be times when you want to create a baseline that

includes only certain activities. You can also make a baseline for one specific

component rather than all components in the stream.

You need to choose the type of baseline to create.

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

114 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v An incremental baseline is a baseline that is created by recording the last full

baseline and those versions that have changed since the last full baseline was

created.

v A full baseline is a baseline that is created by recording all versions below the

component root directory.

Generally, incremental baselines are faster to create than full baselines; however,

the contents of a full baseline can be searched faster than the contents of an

incremental baseline can.

While you are making the baseline, you should lock the stream (see “Locking the

shared stream” on page 112). After you create a baseline, unlock the integration or

feature-specific development stream so that developers can resume delivering work

to the stream.

To make a baseline

1. Lock the stream to prevent developers from delivering work while you create

the baseline (see “To lock a stream” on page 113). Developers can continue to

work on activities in their development streams.

2. Verify the stability of the project by testing its components.

3. Make the baseline. Do one of the following:

v Make baselines for all components in the stream (see “To make new baselines

for all components in the stream” on page 115).

v Make a baseline for certain activities (see “To make a baseline for a set of

activities” on page 116).

v Make a baseline for one specific component (see “To make a baseline of one

component” on page 116).
4. Unlock the stream so that developers can deliver work (see “To unlock the

stream” on page 116).

For information on baselines, see “Specifying a baseline strategy” on page 45.

To make new baselines for all components in the stream

1. Ensure that the stream is locked (see “To lock a stream” on page 113).

2. In the Project Explorer, select the integration stream or feature-specific

development stream in which you want to make the baseline.

3. Click Tools > Make Baseline. The Make Baseline window opens. The

Project/Stream field shows the object selector of the stream that you selected.

4. The Template Name field shows the name that will be used for the new

baseline if a baseline naming template is set for the project. For information

about baseline naming templates, see “Setting a baseline naming template” on

page 92).

Enter a name in the Base Name (Windows systems) or Baseline Title (Linux

and the UNIX system) field only if the project does not have a baseline naming

template set or the template includes the basename token. Otherwise, the Base

Name or Baseline Title field does not appear in the Make Baseline window.

5. Choose the type of baseline to create (see “About making a baseline” on page

114).

6. In View Context, specify a view in which to perform the operation. Choose a

view that is attached to the stream in which you want to make the baseline.

Chapter 7. Managing the UCM project 115

To make a baseline for a set of activities

1. Ensure that the stream is locked (see “To lock a stream” on page 113).

2. In the Project Explorer, select the integration stream or feature-specific

development stream in which you want to make the baseline.

3. Click Tools > Make Baseline. The Make Baseline window opens.

4. If you have a baseline naming template set for the project, the Template Name

field shows the name that will be used for the new baseline. Enter a name in

the Base Name (Windows systems) or Baseline Title (the UNIX system) field

only if the project does not have a baseline naming template set or the template

includes the basename token. Otherwise, the Base Name or Baseline Title field

does not appear in the Make Baseline window. For information about baseline

naming templates, see “Setting a baseline naming template” on page 92).

5. Click Activities in the Make Baseline window, and select the activities that you

want to go into the baseline.

6. Click General and select the type of baseline to create.

7. Specify a view in which to perform the operation. Choose a view that is

attached to the stream where you want to make the baseline.

To make a baseline of one component

1. Ensure that the stream is locked (see “To lock a stream” on page 113).

2. In the Project Explorer, select the stream in which you want to create a new

baseline. Click File > Properties to display the stream property window.

3. Click the Baselines tab. Select a component, and click Make Baseline.

4. Fill in the fields of the Make Baseline window, then click OK.

To unlock the stream

1. In the Project Explorer, select the stream.

2. Click File > Properties to display the property sheet of the stream.

3. Click the Lock tab.

4. Click Unlocked and then click OK.

Testing the baseline

To avoid locking the integration stream or feature-specific development stream for

an extended period of time, use a separate development stream for performing

extensive testing, such as system, regression, and acceptance tests, on new

baselines. See “Creating a development stream for testing baselines” on page 106

for information about creating a development stream.

To test in a separate development stream

To use a test stream to stabilize code, perform the steps shown in Figure 37.

116 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The steps are:

1. Make a baseline that contains the changes to be tested (see PA.BL1 in

Figure 37).

2. Do one of the following:

v Create a development stream dedicated to stabilization (see stream DS in

Figure 37). For information about creating a development stream, see “To

create a development stream” on page 106.

v Rebase a dedicated development stream to the baseline that you made (see

“Rebasing the test development stream” on page 117).
3. Use as the foundation baseline of the test stream the baseline that you created

(see PA.BL1 in Figure 37).

4. Control the changes that are being made in the stabilization stream DS. Other

work from development streams in the project can be delivered to the

integration stream without affecting the stabilization stream. Fixes implemented

in the stabilization stream are isolated from activities delivered to the

integration stream.

5. When the code in the test stream is stable, make a baseline in the test stream

(see PA.BL1.S in Figure 37).

6. Deliver the baseline PA.BL1.S to the integration stream.

7. In the integration stream, recommend the baseline from the stabilization stream

so that development streams can rebase to it. (This is an example of an advance

rebase operation; see “Advance rebase operations” on page 21.)

Rebasing the test development stream

After you create a new baseline and verify that it builds and passes an initial

validation test, rebase the development stream to the new baseline. For information

about the rules for rebasing a stream, see “Summary of rules for rebasing a

stream” on page 23. When you finish rebasing the development stream, you are

ready to begin testing the new baselines.

PA.BL0

PA.BL1

PA.BL0

Integration stream

Project A

a1, a2, a3

Deliver operation

Rebase operation

PA.BL3

PA.BL2

D1.BL1

PA.BL1.S

PA.BL1

DS
(test stream)

D1

Figure 37. A test stream to stabilize a baseline

Chapter 7. Managing the UCM project 117

To rebase the development stream

1. In the Project Explorer, select the development stream and click Tools > Rebase

Stream. The Rebase Stream Preview window opens.

2. By default, your development stream rebases to the recommended baselines.

Because the new baseline has not been tested extensively, you probably have

not yet promoted it to the level associated with recommended baselines. To

rebase to the baseline, or baselines, you want to test, click Advanced. The

Change Rebase Configuration window opens.

3. Select a component that contains a baseline you want to test. Click Change.

The Change Baseline window opens, listing all baselines for the component.

4. Select the baseline that you want to test, and click OK.

5. Select another component in the Change Rebase Configuration window and

repeat the process. When you finish selecting baselines, click OK to close the

Change Rebase Configuration window.

6. Click OK in the Rebase Stream Preview window to continue the rebase

operation. See the Help or Developing Software online help for details on

rebasing a development stream.

Fixing problems in baselines

If you discover a problem with a baseline while testing it, fix the affected files and

deliver the changes to the integration stream.

To fix a problem in a new baseline

1. From the development view attached to the development stream, specify an

activity and check out the files that you need to fix.

2. Make the necessary changes to the files and check them in.

3. Build and test the changes in the development view.

4. When you are confident that the changes work, make a new baseline that

incorporates the changes in the development stream.

5. Deliver the new baseline to the integration or feature-specific development

stream. When you deliver the new baseline to the integration or feature-specific

development stream, you merge changes with work that developers have

delivered since the last baseline was created. For information about delivering

baselines, see “Delivering work from an integration stream to another project”

on page 151.

6. Change the set of recommended baselines for the integration stream or

feature-specific development stream to include the new baseline that you made

in the testing stream. For details about recommending a baseline in another

stream, see “Recommending the baseline” on page 118.

Recommending the baseline

Integrator

Make
baselines

Recommend
baselines

Build
components

Create a
testing stream

118 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

As work on your project progresses and the quality and stability of the

components improve, you make new baselines and want to make the work

available to the team. Do the following:

v Change the baseline promotion level attribute to reflect a level of testing that the

baseline has passed.

v Recommend baselines that have passed extensive testing.

To change a baseline promotion level

1. Access the stream that contains the baseline.

On the Windows system, in the Project Explorer, right-click the stream and click

Properties.

On Linux and the UNIX system, in the Project Explorer, select the stream. Click

File > Properties.

The stream Properties window opens.

2. Click the Baselines tab.

3. In the Components list, select the component that contains the baseline that

you want to promote. In the Baselines list, select the baseline. Click Properties.

The baseline Properties window opens.

4. Click the arrow in the Promotion Level list to display all available promotion

levels. Select the new promotion level.

To recommend a baseline or set of baselines

1. In the Project Explorer, select the stream. Click Tools > Recommend Baselines.

2. In the Recommended Baselines window, you can filter the list of baselines

displayed by selecting a promotion level and clicking Seed List. The window

then displays only baselines at or above the selected promotion level.

3. To remove a baseline from the list, select it and click Remove. To add a

baseline, click Add and select the baseline in the Add Baseline window.

4. To recommend a different baseline of a component, select the baseline and click

Change. In the Change Baseline window, select the baseline that you want to

recommend. To select a baseline in another stream, such as a testing stream,

click Change and navigate to the stream in the Change Baseline window.

You can recommend a baseline for a stream if the baseline is from the stream or

the stream’s foundation.

For a baseline that is not from the stream or from the foundation set of the

stream, the following rules apply:

v The baseline must be an ancestor of the foundation baseline of the stream

and must have been created on the same stream as the foundation baseline.

v The baseline must be contained in the stream, which means the baseline has

been delivered to the stream, or the stream has rebased to the baseline or to

one of its descendants.

v The baseline must contain the current recommended baseline, which means

it must be a descendant of the current recommended baseline.

You are not required to recommend a baseline for every component in the

configuration of the stream.

5. When you finalize your list of recommended baselines, click OK in the

Recommended Baselines window.

Chapter 7. Managing the UCM project 119

Resolving baseline conflicts

If your project uses composite baselines, you may encounter a situation where you

must resolve a conflict in a stream configuration between two different baselines of

the same component. The following conflicts can occur during operations that

involve baselines:

v Making a baseline

v Adding a baseline to a stream configuration

v Recommending a baseline

v Rebasing a stream

For information on composite baselines, see “Identifying a project baseline” on

page 46.

Conflicts between a composite baseline and an ordinary

baseline

A composite baseline can conflict with an ordinary baseline. For example, assume

that a stream configuration includes a composite baseline that selects baseline BL4

of component A, and that the composite baseline is the recommended baseline.

After testing a new baseline, BL5, of component A, you decide to recommend it.

By doing so, you override the member baseline, BL4, selected by the composite

baseline. The Recommended Baselines window identifies BL5 as an override and

BL4 as overridden. UCM uses the same override and overridden identifiers in

other GUIs.

Conflicts between composite baselines

A conflict can occur when a stream configuration includes multiple composite

baselines where each composite baseline selects a baseline of the same component.

A stream cannot select two different baselines of the same component. If you

attempt to perform an operation that would cause this situation, UCM recognizes

the conflict and forces you to resolve it before completing the operation.

Composite baselines promote component reuse by making it easier to include large

components and subsystems into a project. As the number of shared components

rises, a higher probability exists that different subsystems will have a baseline

conflict. Higher-level projects that use lower-level subsystems are increasingly

likely to include in their foundation sets composite baselines that have members in

the same component. Conflicts arise when the members are not the same baseline

for a particular component. For example, suppose AC.BL1 and BCD.BL1 are

composite baselines that each select baselines of component C (see Figure 38).

Baseline C.BL3 a member of composite baseline AC.BL1 and baseline C.BL1 a

member of composite baseline BCD.BL1.

AC.BL1

A.BL1 C.BL3

BCD_BL1

B.BL1 C.BL1 D.BL1

Figure 38. Composite baselines with the same component

120 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

If baselines AC.BL1 and BCD.BL1 are configured in project Y, it is unclear to

Rational ClearCase which baseline on component C to use, baseline C.BL1 or

C.BL3 (see Figure 39).

In the Rational ClearCase environment, a view must have an unambiguous rule for

selecting versions of an element. In UCM, a stream can only use one baseline to

select the versions in a component. Rebase operations and baseline

recommendations that would result in conflicts are blocked.

To resolve the conflict, you are forced to explicitly specify a baseline for the

component in question. This chosen baseline is said to override the members of the

composite baselines in conflict. A baseline that you explicitly specify as an override

baseline in the foundation set of a stream, regardless of whether it resolves a

conflict, overrides any baseline of that component that is implied by a composite

baseline.

To resolve the conflict on component C shown in Figure 39, the project integrator

chooses baseline Cx.BL3 (see Figure 40).

Because an override was selected, the baseline C.BL3 in composite baseline

AC.BL1 and the baseline C.BL1 in composite baseline BCD.BL1 are ignored.

Baseline Cx.BL3 is used to select versions in component C.

Tip: The override applies only for the baseline for component C in the foundation

baselines of the stream, but the composite baseline itself remains the same.

You can choose as the override any baseline of the component involved in the

conflict. The overriding baseline does not have to be one of the conflicting

baselines. The project integrator can select a baseline that is compatible with the

AC.BL1

A.BL1 C.BL3

BCD_BL1 E_BL0

B.BL1 C.BL1 D.BL1

E.BL1

Project Y

Figure 39. Composite baselines with a conflict

AC.BL1

A.BL1 C.BL3

BCD_BL1 E_BL0

Cx.BL3

B.BL1 C.BL1 D.BL1

E.BL1

Project Y

Override

Figure 40. Composite baselines with an override baseline

Chapter 7. Managing the UCM project 121

other baselines in the baseline set of the project. In Figure 40, the project integrator

could have chosen baseline C.BL1 as the override, instead of baseline Cx.BL3.

However, the integrator must ensure that the versions selected by composite

baseline AC.BL1 are compatible with the versions selected by baseline C.BL1. With

the selection of the override Cx.BL3, the AC and BCD subsystems need to be

checked to ensure that they are compatible with baseline Cx.BL3.

Baseline overrides stay in effect until you do one of the following:

v Explicitly remove the overriding baseline from the foundation set (for example,

with cleartool rebase –dbaseline).

v Replace completely the foundation set. This happens when you rebase to the

recommended baselines of the parent stream (cleartool rebase –recommended).

The decision to select a baseline override is solely for the project integrator. It is

not a decision that can be automated. Each project team has to determine the

correct override in each instance of a conflict.

Monitoring project status

 Several tools are provided to help you track the progress of your project. You can

do the following operations:

v View baseline histories

v Compare baselines

v Query a Rational ClearQuest user database

v Generate reports (Windows only)

Viewing baseline histories

On the Windows system, the Component Tree Browser displays the baseline

history of a component. On the UNIX system, the cleartool lscomp command lists

information about a component, including its baselines.

To view baseline history (the Windows system)

1. In the Project Explorer, navigate to the component whose baseline history you

want to see.

2. Right-click the component and click Browse Baselines.

The Component Tree Browser opens and shows the lines of development for the

component and each stream that uses the component. You can see the initial

baseline that was created when the project manager created the component and the

first baseline that the integrator created after creating the component. Also shown

are baselines that are created in the development stream during deliver operations

Project
Manager

Assign and
schedule work

Monitor
project status

Establish
policies

Create
project

122 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

and integration arrows that represent deliver operations, for example, from the

development stream to the integration stream .

To view baseline history (Linux and the UNIX system)

From a shell prompt, use the cleartool lscomp -tree command and specify the

component. For example:

cleartool lscomp -tree guivob@/vobs_guipvob

Baselines and streams in the specified component are listed. The format is similar

to that of the lsvtree command. For more information, see the lscomp reference

page.

Comparing baselines

You can display the differences between two baselines graphically or from a

command shell.

To compare baselines in Component Tree Browser (Windows

only)

1. View the baseline history (see “To view baseline history (the Windows system)”

on page 122).

2. In the Component Tree Browser, select a baseline by clicking its icon. Do one of

the following:

v To compare two baselines, click Tools > Compare > with Another Baseline.

Click the second baseline icon.

v To compare a baseline with its immediate predecessor, click Tools >

Compare > with Previous Baseline.

The Compare Baselines window opens. For more information, see “About the

Compare Baselines window.”

To compare two baselines

Do one of the following:

v Use the cleardiffbl command and specify two baselines. For example:

cleardiffbl OM_proj2.0_Integration_08_12_01 OM_proj2.0_09_06_01

The Compare Baselines window opens.

v Open the Compare Baselines window from within the baseline Property

window.

1. In Project Explorer, select the integration stream, and click File > Properties

to display the integration stream Property window.

2. Click the Baselines tab and then select the component that contains the

baseline you want to compare.

3. Select the baseline; then right-click it and click Compare with Previous

Baseline or Compare with Another Baseline.

The Compare Baselines window opens.

For more information, see “About the Compare Baselines window.”

About the Compare Baselines window

The Compare Baselines window shows the results of a comparison of two

baselines in the following pages:

Chapter 7. Managing the UCM project 123

Members

Shows the baselines that contribute to each baseline of a composite

baseline

Activities

Lists the activities (if any) that contribute to the baseline. A baseline could

contain no activities if it or its member baselines are the initial baselines of

the component.

Versions

Lists the change sets associated with the activities in the baseline.

Querying Rational ClearQuest user databases

If you use the UCM integration with Rational ClearQuest, you can use Rational

ClearQuest queries to retrieve information about the state of your project. When

you create a new Rational ClearQuest user database or upgrade an existing

Rational ClearQuest user database to use a UCM-enabled schema, the integration

installs some queries in subfolders of the Public Queries folder in the user database

workspace. These queries make it easy for developers to see which activities are

assigned to them and for project managers to see which activities are active in a

particular project. Table 4 lists and describes the queries.

 Table 4. Queries in a UCM-enabled schema

Query Description

ActiveForProject For one or more specified projects, selects

all activities in an active state type.

ActiveForStream For one or more specified streams, selects all

activities in an active state type.

ActiveForUser For one or more specified developers,

selects all assigned activities in an active

state type.

AllActivitiesInStream For one or more specified streams, selects all

activities.

MyCompletedWork Selects all activities in a completed type

state for the developer running the query.

MyToDoList Selects all activities in an active or ready

state type assigned to the developer running

the query.

UCMProjects Selects all projects linked to the Rational

ClearQuest user database.

UCMCustomQuery1 This query is not intended to be used

directly by users; the integration uses it.

When a developer checks out or checks in a

file, or adds a file to source control and is

prompted to select an activity, the

integration calls this query to display the

list of activities available in the stream

associated with the developer’s view.

You can customize this query on a

per-developer basis by copying the query

from the Public Queries folder to the

developer’s Personal Queries folder and

using the Query editor.

124 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

You can also create your own queries by clicking Query > New Query within the

Rational ClearQuest client. In the Choose a record type window that opens, select

All_UCM_Activities if you want the query to search all UCM-enabled record

types.

Using Rational ClearCase Reports (Windows systems only)

The Rational ClearCase Reports applications (Report Builder and Report Viewer)

allow you to generate and view reports specific to your project environment. Use

the Report Builder to select and define report parameters. Use the Report Viewer

to see the report output.

Product Note: To start the Rational ClearCase Report Builder:

v On a system that runs Rational ClearCase, click Start >

Programs > IBM Rational > IBM Rational ClearCase >

Administration > Report Builder.

v On a system that runs the ClearCase LT server, click Start >

Programs > IBM Rational > IBM Rational ClearCase LT >

Administration > Report Builder.

The Report Builder categorizes its reports based on object types, such as UCM

projects and streams. When you select a category in the left pane, the Report

Builder lists the reports available for that category in the upper right pane. When

you select a report, the Report Builder prompts you for parameters in the lower

right pane.

For details on using the Report Builder and the Report Viewer, see Help.

Rational ClearCase Reports includes a set of hooks into the Report Builder and

Report Viewer applications. These hooks, known as report procedures, implement

all the operations necessary to generate and view a specific report. The Rational

ClearCase Reports Programming Interface allows you to customize report

procedures. For details on doing so, see Appendix C, “Customizing Rational

ClearCase Reports,” on page 265.

Cleaning up the project

When your team finishes work on a project and releases or deploys the new

software, you should clean up the project environment before creating the next

version of the project. Cleaning up involves removing any unused objects, and

locking and hiding the project and its streams. This process reduces clutter and

makes it easier to navigate in the Project Explorer.

Removing unused objects

During the life of the project, you or a developer might create an object and then

decide not to use it. Perhaps you decide to use a different naming convention, and

you create a new object instead of renaming the existing one. To avoid confusion

and reduce clutter, remove these unused objects.

About deleting projects

Note: By design, you cannot delete a project in which a delivery or a rebase

operation has been performed or from which a delivery to another project

has been performed.

Chapter 7. Managing the UCM project 125

You can delete a project only if it does not contain any streams. When you create a

project with the Project Creation Wizard, the wizard also creates an integration

stream. Therefore, you can delete a project only if you created it with the cleartool

mkproject command, or if you first delete the integration stream. For more

information on removing projects, see the rmproject reference page in the IBM

Rational ClearCase Command Reference. To remove an unused project, see “To delete

an unused object.”

About deleting streams

You can delete a development stream or an integration stream only if all of the

following conditions are true:

v The stream contains no activities.

v No baselines have been created in the stream.

v No views are attached to the stream.

In addition, you cannot delete an integration stream if the project contains any

development streams. For more information on removing streams, see the

rmstream reference page in the IBM Rational ClearCase Command Reference. To

remove an unused stream, see “To delete an unused object.”

About deleting components

You can delete a component only if all of the following conditions are true:

v No baselines of the component other than its initial baseline exist.

v The initial baseline of the component does not serve as a foundation baseline for

another stream.

For more information about removing components, see the rmcomp reference page

in the IBM Rational ClearCase Command Reference. To remove an unused component,

see “To delete an unused object.”

About deleting baselines

You can delete a baseline only if all of the following conditions are true:

v The baseline does not serve as a foundation baseline.

v The baseline is not a component initial baseline.

v A stream has not made changes to the baseline.

v The baseline is not used as the basis for an incremental baseline.

For more information about removing baselines, see the rmbl reference page in the

IBM Rational ClearCase Command Reference. To remove an unused baseline, see “To

delete an unused object.”

About deleting activities

You can delete an activity only if both of the following conditions are true:

v The activity has no versions in its change set.

v No view is currently set to the activity.

For more information about removing activities, see the rmactivity reference page

in the IBM Rational ClearCase Command Reference. To remove an unused activity, see

“To delete an unused object.”

To delete an unused object

To delete an unused object, perform the following steps:

1. Ensure that the requirements for the type of object are satisfied.

126 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v For a project, see “About deleting projects” on page 125.

v For a stream, see “About deleting streams” on page 126.

v For a component, see “About deleting components” on page 126.

v For a baseline, see “About deleting baselines” on page 126.

v For an activity, see “About deleting activities” on page 126.
2. Select the object in the Project Explorer, and click File > Delete.

To delete a baseline (see “About deleting baselines” on page 126), use the

cleartool rmbl command.

Locking and making obsolete the project and streams

To prevent a project or a stream from appearing in the Project Explorer, lock the

object and use the obsolete option. The obsolete option hides the object.

To lock and hide an object

1. In the Project Explorer, select the stream or project that you want to hide, and

click File > Properties to display its property sheet.

2. Click the Lock tab, and select Obsolete. Click OK.

To see objects that are obsolete

In the Project Explorer, click View > Show Obsolete Items.

Chapter 7. Managing the UCM project 127

128 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 8. Using triggers to enforce UCM development

policies

UCM provides a group of development policies that you can easily set in a project

by using the graphic user interface (GUI) or command line interface (CLI) and

additionally supports triggers to enforce policies. For information about UCM

policies, see Chapter 4, “Setting policies,” on page 63.

Overview of triggers

A trigger is a monitor that causes one or more procedures or actions to be run

whenever a certain Rational ClearCase operation is performed. Typically, the

trigger runs a Perl, batch, or shell script. You can use triggers to restrict operations

to specific users and to specify the conditions under which they can perform those

operations.

In addition, you can use triggers on certain UCM operations to enforce customized

development policies for your project team. You can create triggers and use them

to implement various development policies in UCM projects. For additional

information about trigger usage, see the cleartool mktrigger and mktrtype

reference pages.

Supported triggers

You can use triggers with the following UCM operations:

v chbl

v chfolder

v chproject

v chstream

v deliver

v mkactivity

v mkbl

v mkcomp

v mkfolder

v mkproject

v mkstream

v rebase

v rmbl

v rmcomp

v rmfolder

v rmproject

v rmstream

v setactivity

v setplevel

You can also use triggers with the following Rational ClearCase operations on

UCM objects:

v lock

v unlock

© Copyright IBM Corp. 1992, 2006 129

You can define trigger types that can be set on lock and unlock operations and can

restrict them to some individually named UCM objects or all UCM objects

(activities, baselines, components, folders, projects, and streams).

Preoperation and postoperation triggers

Triggers fall into one of two categories. Preoperation triggers fire, or run their

corresponding procedures, before an operation takes place. Postoperation triggers

fire after an operation occurs. When a user enters a Rational ClearCase command,

the presence of preoperation triggers on that command are checked. If a trigger is

associated with the command, the trigger procedure is fired. If the trigger

procedure finishes with a failure status, the operation requested by the user is

disallowed. If the trigger procedure finishes with a success status, the operation is

performed.

Use preoperation triggers to prevent users from performing operations unless

certain conditions apply. Use postoperation triggers to perform actions after an

operation completes. For example, you may want to place a postoperation trigger

on the deliver operation to notify team members whenever a developer delivers

work to the project’s integration stream.

Scope of triggers

A trigger type defines a trigger for use within a VOB or PVOB. When you create a

trigger type, with the cleartool mktrtype command, you specify the scope to be

one of the following:

v An element trigger type applies to one or more elements. You attach an instance of

the trigger type to one or more elements by using the cleartool mktrigger

command.

v An all-element trigger type applies to all elements in a VOB.

v A type trigger type applies to type objects, such as attributes types, in a VOB.

v A UCM trigger type applies to a UCM object, such as a stream or a project, in a

PVOB.

v An all-UCM-object trigger type applies to all UCM objects in a PVOB.

Using attributes with triggers

As you design triggers to enforce development policies, you may find it useful to

use attributes. An attribute is a name/value pair. An attribute type defines an

attribute. You can apply an attribute to an object, such as a stream or an activity, or

to a version of an element. In your trigger scripts, you can test the value of an

attribute to determine whether to fire the trigger. For example, you could define an

attribute type called TESTED and attach a TESTED attribute to elements to

indicate whether they had been tested. Acceptable values would be Yes and No.

When to use Rational ClearQuest scripts instead of UCM

triggers

There are several use cases for UCM triggers. If your UCM project is enabled to

work with Rational ClearQuest, you can set the following policies, which are

described in “Policies for the UCM integration with Rational ClearQuest” on page

69:

v For submitting records from the Rational ClearCase client

– Disallow Submitting Records from the ClearCase Client

– Allowed Record Types
v For WorkOn

130 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

– Perform ClearQuest Action Before Work On
v For delivery

– Perform ClearQuest Action Before Delivery

– Transfer ClearQuest Mastership Before Delivery

– Perform ClearQuest Action After Delivery

– Transition to Complete After Delivery

– Transfer ClearQuest Mastership After Delivery
v For changing an activity

– Perform ClearQuest Action Before Changing Activity

– Perform ClearQuest Action After Changing Activity

– Transition to Complete After Changing Activity

Some of these policies have Rational ClearQuest global hook scripts associated

with them, which you can edit or replace in Rational ClearQuest Designer to

customize the policy for your environment. You can also write your own Rational

ClearQuest hooks to enforce development policies. In general, if the policy you

want to enforce involves a Rational ClearQuest action, use one of the Rational

ClearQuest policies previously mentioned or use Rational ClearQuest hooks. If the

policy you want to enforce involves a Rational ClearCase action, use UCM triggers.

Some operations might have Rational ClearCase triggers and Rational ClearQuest

hooks associated with them. For example, you might define a trigger that sends

e-mail to team members when a developer completes a deliver operation, and you

might have the Perform ClearQuest Activity After Delivery policy enabled. Under

Rational ClearCase and Rational ClearQuest control, triggers, hooks, and UCM

operations are run in the following order:

v Rational ClearCase preoperation trigger

v Rational ClearQuest preoperation hook

v UCM action

v Rational ClearQuest postoperation hook

v Rational ClearQuest transition activity hook

v Rational ClearCase postoperation trigger

You can use the Rational ClearQuest API to write code that runs in the Rational

ClearQuest environment. For example, you can modify records that users submit

or validate the records before they are committed to the user database. For code

examples that work with cqperl on Linux and the UNIX system or that use CAL

methods in Rational ClearQuest hook scripts on the Windows system, see IBM

Rational ClearQuest API Reference.

Sharing triggers among different types of platform

You can define a trigger that fires correctly depending on the type of platform on

which it runs (Linux, the UNIX system, and Windows computers). The following

techniques are available:

v “Using different paths or different scripts” on page 132

v “Using the same script” on page 132

With one technique, you use different paths or different scripts; with the other

technique, you use the same script for all platforms. For more information about

sharing triggers, see “Tips for sharing scripts” on page 132.

Chapter 8. Using triggers to enforce UCM development policies 131

Using different paths or different scripts

To define a trigger that fires on Linux and the UNIX system; the Windows system;

or both types of platform, and that uses different paths to point to the trigger

scripts, use the mktrtype command with the –execunix and –execwin options.

These options behave the same as –exec when the trigger fires on the appropriate

platform (Linux and the UNIX system for –execunix or the Windows system for

–execwin). On the inappropriate type of platform, the related script does not run.

This technique allows a single trigger type to use different paths for the scripts or

to use completely different scripts on Linux or the UNIX system and the Windows

computer. For example:

cleartool mktrtype –element –all –nc –preop checkin

–execunix /public/scripts/precheckin.sh

–execwin \\neon\scripts\precheckin.bat

pre_ci_trig

Tip: The command line example is broken across lines to make the example easier

to read. You must enter the command on one line.

On Linux or the UNIX system, only the script precheckin.sh runs. On the Windows

system, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers

that specify only –execunix always fail on the Windows system. Likewise, triggers

that specify only –execwin fail on Linux and the UNIX system.

Using the same script

To use the same trigger script on Linux, the UNIX system, and the Windows

system, use a batch command interpreter that runs on all operating systems. For

this purpose, the ratlperl program is included in the Rational ClearCase

configuration. You can use this version of Perl on the Windows system, Linux, and

the UNIX system. The commands Perl on Linux and the UNIX system and ccperl

on the Windows system are wrapper programs that run ratlperl.

The following mktrtype command creates sample trigger type pre_ci_trig and

names precheckin.pl as the executable trigger script.

cleartool mktrtype –element –all –nc –preop checkin \

–execunix ’Perl /public/scripts/precheckin.pl’ \

–execwin ’ccperl \\neon\scripts\precheckin.pl’ \

pre_ci_trig

Note: In your scripts, you can run ratlperl directly. Ensure that you include the

following default paths to execute the scripts successfully:

v On Linux and the UNIX system: /opt/rational/common/

v On the Windows system: <install_location>\Rational\Common\

The value install_location is the root folder in which you installed Rational

ClearCase.

Tips for sharing scripts

v To tailor script execution for each operating system, use environment variables

in Perl scripts.

v To collect or display information interactively, use the clearprompt command.

132 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v For more information on using the –execunix and –execwin options, see the

mktrtype reference page.

Enforce serial deliver operations

Because UCM allows multiple developers to concurrently deliver work to the same

integration stream, conflicts can occur if two or more developers attempt to deliver

changes to the same element. If one developer’s deliver operation has an element

checked out, the second developer cannot deliver changes to that element until the

first deliver operation is completed or canceled. The second deliver operation

attempts to check out all elements other than the checked-out one, but it does not

proceed to the merge phase of the operation. The second developer must either

wait for the first deliver operation to finish or undo the second deliver operation.

You may want to implement a development policy that eliminates the confusion

that concurrent deliveries can cause developers. The following sections show Perl

scripts that prevent multiple developers from delivering work to the same

integration stream concurrently:

v Script 1 creates the trigger types and an attribute type.

v Script 2 is the preoperation trigger action that fires at the start of a deliver

operation.

v Script 3 is the postoperation trigger action that fires at the end of a deliver

operation.

For information about sharing scripts, see “Sharing triggers among different types

of platform” on page 131.

Delivery setup script

This setup script creates a preoperation trigger type, a postoperation trigger type,

and an attribute type. The preoperation trigger action fires when a deliver

operation starts, as represented by the deliver_start operation kind (opkind). The

postoperation trigger action fires when a deliver operation is canceled or

completed, as represented by the deliver_cancel and deliver_complete opkinds,

respectively.

The script runs on both Linux or the UNIX system and the Windows system.

Because the command-line syntax to run the preoperation and postoperation

scripts on Windows differs slightly depending on whether the PVOB resides on

Windows, Linux, or the UNIX system, the setup script uses an IF ELSE Boolean

expression to set the appropriate PVOB tag.

The mktrtype command uses the –ucmobject and –all options to specify that the

trigger type applies to all UCM objects in the PVOB, but the –stream option

restricts the scope to one integration stream.

The mkattype command creates an attribute type called deliver_in_progress,

which the preoperation and postoperation scripts use to indicate whether a

developer is delivering work to the integration stream.

use Config;

my $PVOBTAG;

my $PREOPCMDW;

my $POSTOPCMDW;

$PREOPCMDW = ’-execwin "ccperl

\\\\pluto\\c$\\ucmscripts\\ex1_preop.pl"’;

Chapter 8. Using triggers to enforce UCM development policies 133

$POSTOPCMDW = ’-execwin "ccperl

\\\\pluto\\c$\\ucmscripts\\ex1_postop.pl"’;

if ($Config{’osname’} eq ’MSWin32’) {

 $PVOBTAG = ’\cyclone-pvob’;

}

else {

 $PVOBTAG = ’/pvobs/cyclone-pvob’;

}

my $PREOPCMDU = ’’;

my $POSTOPCMDU = ’’;

my $STREAM = "cc5testproj_Integration\@$PVOBTAG";

my $PREOPTRTYPE = "trtype:ex1_preop\@$PVOBTAG";

my $POSTOPTRTYPE = "trtype:ex1_postop\@$PVOBTAG";

my $CANXTRTYPE = "trtype:ex1_cancel\@$PVOBTAG";

my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

print $PVOBTAG . "\n";

print $STREAM . "\n";

print $PREOPTRTYPE . "\n";

print $POSTOPTRTYPE . "\n";

print $CANXTRTYPE . "\n";

print $ATTYPE . "\n";

print `cleartool mktrtype -ucmobject -all -preop deliver_start

$PREOPCMDU $PREOPCMDW -stream $STREAM -nc $PREOPTRTYPE`;

print `cleartool mktrtype -ucmobject -all -postop deliver_complete

$POSTOPCMDU $POSTOPCMDW -stream $STREAM -nc $POSTOPTRTYPE`;

print `cleartool mktrtype -ucmobject -all -postop deliver_cancel

$POSTOPCMDU $POSTOPCMDW -stream $STREAM -nc $CANXTRTYPE`;

print `cleartool mkattype -vtype integer -default 1 -nc $ATTYPE`;

Delivery preoperation trigger script

This preoperation trigger action fires when a developer begins to deliver work to

the specified integration stream. The script attempts to attach an attribute of type

deliver_in_progress to the integration stream. If another developer is in the

process of delivering work to the same stream, the mkattr command fails and the

script displays a message suggesting that the developer try again later. Otherwise,

the mkattr command succeeds and prevents other developers from delivering to

the integration stream until the current deliver operation finishes.

use Config;

my $PVOBTAG;

my $tempfile;

my $exit_value;

if ($Config{’osname’} eq ’MSWin32’) {

 $PVOBTAG = ’\cyclone-pvob’;

 $tempfile = $ENV{TMP}."\\expreop.".$ENV{"CLEARCASE_PPID"}.".txt";

}

else {

 $PVOBTAG = ’’;

}

my $STREAM = "stream:".$ENV{"CLEARCASE_STREAM"};

my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

print $STREAM."\n";

print $ATTYPE."\n";

my $cmdline;

my $cmdoutput;

Test to see if the deliver in progress attribute is

applied to the target stream.

134 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

$msg = ‘cleartool describe -fmt "%a" $STREAM‘;

print $msg."\n";

if ($ENV{"CLEARCASE_CMDLINE"} eq "") {

 open(TEMPFH, "> $tempfile");

 print TEMPFH $msg."\n";

 close(TEMPFH);

 $cmdline = "clearprompt text -outfile $tempfile -multi_line -dfile

\"$tempfile\" -prompt \"Describe Results\"";

 $cmdoutput = ‘$cmdline‘;

}

if (index($msg, "deliver_in_progress") >=0) {

 print "***\n";

 print "*** A deliver operation is already in progress. Please

try again later.\n";

 print "***\n";

 exit 1;

}

$cmdline = "cleartool mkattr -default $ATTYPE $STREAM";

print $cmdline."\n";

$msg = ‘$cmdline‘;

$exit_value = $? >> 8;

if (!($exit_value eq 0)) {

 print "***\n";

 print "*** A deliver operation was started just before yours.\n";

 print "*** That deliver operation is already in progress. Please

try again later.\n";

 print "***\n";

exit 1;

}

exit 0;

Delivery postoperation trigger script

This postoperation trigger action fires when a developer cancels or completes a

deliver operation to the specified integration stream. This script removes the

deliver_in_progress attribute that the preoperation script attaches to the

integration stream at the start of the deliver operation. After the attribute is

removed, another developer can deliver work to the integration stream.

perl script that fires on deliver_complete or deliver_cancel postop

trigger.

use Config;

define platform-dependent arguments.

my $PVOBTAG;

if ($Config{’osname’} eq ’MSWin32’) {

 $PVOBTAG = ’\cyclone-pvob’;

}

else{

 $PVOBTAG = ’’;

}

my $STREAM = "stream:".$ENV{"CLEARCASE_STREAM"};

my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

remove the attribute to allow deliveries.

print `cleartool rmattr -nc $ATTYPE $STREAM`;

Chapter 8. Using triggers to enforce UCM development policies 135

Send mail to developers on deliver operations

To improve communication among developers on your project team, you may

want to create a trigger type that sends an e-mail message to team members

whenever a developer completes a deliver operation. The following sections

include scripts for detecting deliveries and notifying developers:

v Script 1 creates a trigger type that fires at the end of a successful deliver

operation.

v Script 2 is the postoperation trigger action that sends e-mail messages to

developers.

For information about sharing scripts, see “Sharing triggers among different types

of platform” on page 131.

E-mail notification setup script

This script creates a postoperation trigger type that fires when a developer finishes

a deliver operation, as represented by the deliver_complete opkind. The mktrtype

command uses the –stream option to indicate that the trigger type applies only to

deliver operations that target the specified integration stream.

This is a Perl script to set up the triggertype

for e-mail notification on deliver.

use Config;

define platform-dependent arguments.

my $PVOBTAG;

if ($Config{’osname’} eq ’MSWin32’) {

 $PVOBTAG = ’\cyclone_pvob’;

 $WCMD = ’-execwin "ccperl

\\\\pluto\disk1\ucmtrig_examples\ex2\ex2_postop.pl"’;

}

else {

 $PVOBTAG = ’/pvobs/cyclone_pvob’;

 $WCMD = ’-execwin "ccperl

\\\\\\pluto\disk1\ucmtrig_examples\ex2\ex2_postop.pl"’;

}

my $STREAM = "stream:P1_int\@$PVOBTAG";

my $TRTYPE = "trtype:ex2_postop\@$PVOBTAG";

my $UCMD = ’-execunix "Perl

/net/pluto/disk1/ucmtrig_examples/ex2/ex2_postop.pl"’;

print ’cleartool mktrtype -ucmobject -all -postop deliver_complete

$WCMD $UCMD -stream $STREAM -nc $TRTYPE`;

E-mail notification postoperation trigger script

This postoperation trigger action fires when a developer finishes delivering work

to the integration stream. The script composes and sends an e-mail message to

other developers on the project team telling them that a deliver operation has just

finished. The script uses Rational ClearCase environment variables to provide the

following details about the deliver operation in the body of the message:

v Project name

v Development stream that delivered work

v Integration stream that received delivered work

v Integration activity created by the deliver operation

v Activities delivered

v Integration view used by deliver operation

136 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Perl script to send mail on deliver complete.

Simple package to override the "open" method of Mail::Send so we

can control the mailing mechanism.

package SendMail;

use Config;

use Mail::Send;

@ISA = qw(Mail::Send);

sub open {

 my $me = shift;

 my $how; # How to send mail

 my $notused;

 my $mailhost;

 # On Windows use SMTP

 if ($Config{’osname’} eq ’MSWin32’) {

 $how = ’smtp’;

 $mailhost = "localmail0.company.com";

 }

 # else use defaults supplied by Mail::Mailer

 Mail::Mailer->new($how, $notused, $mailhost)->open($me);

}

Main program

 my @to = "developers\@company.com";

 my $subject = "Delivery complete";

 my $body = join ’’, ("\n",

 "UCM Project: ", $ENV{CLEARCASE_PROJECT}, "\n",

 "UCM source stream: ", $ENV{CLEARCASE_SRC_STREAM}, "\n",

 "UCM destination stream: ", $ENV{CLEARCASE_STREAM}, "\n",

 "UCM integration activity: ", $ENV{CLEARCASE_ACTIVITY}, "\n",

 "UCM activities delivered: ", $ENV{CLEARCASE_DLVR_ACTS}, "\n",

 "UCM view: ", $ENV{CLEARCASE_VIEW_TAG}, "\n"

);

 my $msg = new SendMail(Subject=>$subject);

 $msg->to(@to);

 my $fh = $msg->open($me);

 $fh->print($body);

 $fh->close();

 1; # return success

Do not allow activities to be created on the integration stream

Anyone who has an integration view attached to the integration stream can create

activities on that stream, but the UCM process calls for developers to create

activities in their development streams. You may want to implement a policy that

prevents developers from creating activities on the integration stream

inadvertently. This section shows a Perl script that enforces that policy.

Chapter 8. Using triggers to enforce UCM development policies 137

For information about sharing scripts, see “Sharing triggers among different types

of platform” on page 131.

The following mktrtype command creates a preoperation trigger type called

block_integration_mkact.

cleartool mktrtype -ucmobject -all -preop mkactivity -execwin "ccperl ^

\\pluto\disk1\triggers\block_integ_mkact.pl" -execunix "Perl ^

/net/jupiter/triggers/block_integ_mkact.pl"

block_integration_mkact@\my_pvob

The trigger type fires when a developer attempts to make an activity.

The following preoperation trigger script runs when the block_integration_mkact

trigger fires.

Get the integration stream name for this project

my $istream = ‘cleartool lsproject -fmt "%[istream]p"

$ENV{"CLEARCASE_PROJECT"}‘;

Get the current stream and strip off VOB tag

$_ = $ENV{"CLEARCASE_STREAM"};

s/\@.*//;

my $curstream = $_;

If it’s the same as our stream, then it is the integration stream

if ($istream eq $curstream) {

 # Only allow this mkact if it is a result of a deliver

 # Determine this by checking the parent op kind

 if ($ENV{"CLEARCASE_POP_KIND"} ne "deliver_start") {

 print "Activity creation is only permitted in integration

streams for

 delivery.\n";

 exit 1

 }

}

exit 0

The script uses the cleartool lsproject command and the CLEARCASE_PROJECT

environment variable to determine the name of the project’s integration stream. An

integration activity is created to keep track of changes that occur during a deliver

operation. The script uses the CLEARCASE_POP_KIND environment variable to

determine whether the activity being created is an integration activity. If the

mkactivity operation is the result of a deliver operation, the value of

CLEARCASE_POP_KIND, which identifies the parent operation, is deliver_start.

If the value of CLEARCASE_POP_KIND is not deliver_start, the activity is not an

integration activity, and the script disallows the mkactivity operation.

Implementing a role-based access control system

In a Rational ClearCase environment, where users perform different roles, you may

want to restrict access to certain Rational ClearCase operations based on role. You

can use a trigger definition and script that implement a role-based access control

system.

For information about sharing scripts, see “Sharing triggers among different types

of platform” on page 131.

The following mktrtype command creates a preoperation trigger type called

role_restrictions.

138 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

cleartool mktrtype -nc -ucmobject -all -preop mkstream,mkbl,mkactivity \

-execunix "perl /net/jupiter/triggers/role_restrictions.pl" \

-execwin "ccperl \\pluto\disk1\triggers\role_restrictions.pl" \

role_restrictions@\my_pvob

The trigger type fires when a user attempts to make a baseline, stream, or activity.

Role-based preoperation trigger script

The following preoperation trigger script maps users to the following roles:

v Project manager

v Integrator

v Developer
use strict;

sub has_permission

{

 my ($user,$op,$pop,$proj) = @_;

 #When performing a composite operation like ’deliver’ or ’rebase’,

 #we don’t need to check permissions on the individual sub-operations

 #that make up the composite.

 return 1 if($pop eq ’deliver_start’ || $pop eq ’rebase_start’ ||

 ($pop eq ’deliver_complete’ || $pop eq ’rebase_complete’ ||

 ($pop eq ’deliver_cancel’ || $pop eq ’rebase_cancel’);

 # Which roles can perform what operations?

 # Note that these maps can be stored in a Rational ClearCase attribute

 # on each project instead of hard-coded here in the trigger script

 # to give true per-project control.

 my %map_op_to_roles = (

 mkactivity => ["projectmgr", "integrator", "developer"],

 mkbl => ["projectmgr", "integrator"],

 mkstream => ["projectmgr", "integrator", "developer"],

);

 # Which users belong to what roles?

 my %map_role_to_users = (

 projectmgr => ["kate"],

 integrator => ["kate", "mike"],

 developer => ["kate", "mike", "jones"],

);

 # Does user belong to any of the roles that can perform this

operation?

 my ($role,$tmp_user);

 for $role (@{ $map_op_to_roles{$op} }) {

 for $tmp_user (@{ $map_role_to_users{$role} }) {

 if ($tmp_user eq $user) {

 return 1;

 }

 }

 }

 return 0;

}

sub Main

{

 my $user = $ENV{CLEARCASE_USER};

 my $proj = $ENV{CLEARCASE_PROJECT};

 my $op = $ENV{CLEARCASE_OP_KIND};

Chapter 8. Using triggers to enforce UCM development policies 139

my $pop = $ENV{CLEARCASE_POP_KIND};

 my $perm = has_permission($user, $op, $proj);

 printf("$user %s permission to perform ’$op’ in project $proj\n",

 $perm ? "has" : "does NOT have");

 exit($perm ? 0 : 1);

}

Main();

The script maps the mkactivity, mkbl, and mkstream operations to the roles that

are permitted to perform them. For example, only users designated as project

managers or integrators can make a baseline.

The script uses the CLEARCASE_USER environment variable to retrieve the user’s

name, the CLEARCASE_OP_KIND environment variable to identify the operation

the user attempts to perform, and the CLEARCASE_POP_KIND environment

variable to identify the parent operation. If the parent operation is deliver or

rebase, the script does not check permissions.

Additional uses for UCM triggers

The examples shown in sections “Enforce serial deliver operations” on page 133

through “Implementing a role-based access control system” on page 138 represent

just a few ways that you may use UCM triggers to enforce development policies.

Other uses for UCM triggers include the following:

v Create an integration between UCM and a change request management (CRM)

system. Although most customers can use the UCM integration with Rational

ClearQuest, you may want to integrate with another CRM system. To

accomplish this, you could perform the following steps:

– Create a trigger type on mkactivity that creates a corresponding record in the

CRM database when a developer makes a new activity.

– Create a trigger type on setactivity that transitions the record in the CRM

database to a scheduled state when a developer starts working on an activity.

– Create a trigger type on deliver that transitions the record in the CRM

database to a completed state when a developer finishes delivering the

activity to the integration stream.
v Create a trigger type on rebase that prevents developers from rebasing certain

development streams. You may want to enforce this policy on a development

stream that is being used to fix one particular bug.

v Create a trigger type on setactivity that allows specific developers to work on

specific activities.

140 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 9. Managing multiple projects

Chapters Chapter 2 through Chapter 8 discuss the management of a single UCM

project. This chapter discusses the uses and management of multiple UCM

projects.

Project uses

Generally, multiple-project organization falls into one of two categorizations:

release-oriented and component-oriented.

Release-oriented projects

A project team can organize its work for product releases. First, the team might

work on Release 1 of the product. To work on Release 2, the team branches off

Release 1 and begins new development work in the Release 2 stream, and, when

Release 3 work begins, it might branch off the Release 2 stream.

After Release 1 ships to end users, patches for the release might be developed in

its own project, which branches off Release 1. The patch project delivers its work to

Release 2, so that the bug fixes can be incorporated into the new release.

This type of project organization results in a cascade of branches that can cause

some difficulty. To avoid the difficulty, a slightly different project organization is

generally recommended for release-oriented projects (see Figure 41).

In the release-oriented organization shown in Figure 41, all projects start from a

foundation baseline in the Mainline project. The Webotrans_1.0 project delivers its

release to the Mainline project. A patch release project Rel_1_Patch can be started

from a stable baseline in the project Webotrans_1.0 and can deliver its work to the

Mainline project integration stream. Instead of cascading from the previous

release, a follow-on project Webotrans_2.0 is then started from the baseline in the

integration stream of the Mainline project.

A release-oriented project must have modifiable access to all of the components

that are contained in the final product. Developers working on one component of

the project need to consistently and frequently coordinate their work with

developers working on other components. This type of project organization in

UCM works well when there is tight coupling between components.

© Copyright IBM Corp. 1992, 2006 141

Using a mainline project

If you anticipate that your team will develop and release numerous versions of

your system, create a mainline project (see Figure 41). A mainline project serves as

a single point of integration for related projects over a period of time. It is not

specific to any single release.

For example, assume the Webotrans team plans to develop and release new

versions of their product every six months. For each new version, the project

manager could create a project whose foundation baselines are the final

recommended baselines in the prior project’s integration stream. For example, the

foundation baselines of Webotrans 2.0 are the final recommended baselines in the

Webotrans 1.0 integration stream; the foundation baselines for Webotrans 3.0 are

the final recommended baselines in the Webotrans 2.0 integration stream, and so

on. This approach is referred to as a cascading projects design. The disadvantage to

this approach is that you must look at all integration streams to see the entire

history of the Webotrans projects.

In the mainline project approach, the Webotrans project manager creates a mainline

project with an initial set of baselines, and then creates Webotrans 1.0 based on

those initial baselines. When developers finish working on Webotrans 1.0, the

/main Mainline project

Deliver operation

MP.BL0

MP.BL0

R1.0

MP.BL1

MP.BL1

Webotrans_1.0

Webotrans_2.0

Rel_1_Patch

R1.Final

R1_Patch

R1.Final

R1.B1

R1.0

R2.Final

R2.B1

Figure 41. An organization for release-oriented projects

142 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

project manager delivers the final recommended baselines to the mainline project’s

integration stream. These baselines in the mainline project’s integration stream

serve as the foundation baselines for the Webotrans 2.0 project. When the

Webotrans 2.0 team finishes its work, the project manager delivers the final

recommended baselines to the mainline project integration stream, and so on. The

advantage to this approach is that each project final recommended baselines are

available in the mainline project integration stream.

Composite baselines in release-oriented projects

In release-oriented projects, use composite baselines to shorten recommended

baseline lists. Using composite baselines makes it easier to tell which baselines

were recommended at different times. The composite baselines can be used to

represent major subsystems in the product. Or, in the simplest case, a project can

consolidate all of its baselines into a single component, which it recommends and

delivers to follow-on projects.

Additionally, using a single composite baseline to represent the final product (that

is, collecting baselines from all of the components) reduces the occurrence of

baseline conflicts. If a project uses a single composite baseline for the final product,

the project integrator can implement a process rule that forces all builds to occur

from the top-level component. This process rule reduces the probability of a

developer inadvertently introducing conflicts.

Developers can still choose to use baseline overrides when they need to access

materials that are not included in the recommended baseline set. For example, if a

developer needs a bug fix that has not yet been included in a recommended

baseline, the developer can rebase to the appropriate baseline for the specific

component containing the bug fix, even if there is no baseline conflict.

Take care when you use baseline overrides to share code in this way, because you

can introduce a conflict into a stream. Baseline conflicts can occur when more than

one composite baseline is overridden — but only when the overridden baselines

are composite baselines. Baseline conflicts cannot be created if a single composite

baseline is overridden or if baselines of components that are not members of other

components are overridden.

Component-oriented Projects

Development teams can organize their work in terms of reusable assets. These

teams use projects to create individual components and composite baselines that

select baselines of several components. Low-level or core components can be used

to construct mid-level components or subsystems, until the highest level

components are integrated into a product.

The goal of a component-oriented project is to produce a composite baseline or a

set of baselines that represents the integration of the shared components into a

subsystem (see Figure 42).

Chapter 9. Managing multiple projects 143

In Figure 42, project X uses components A and C to produce a set of baselines that

define the X subsystem, and project Z uses components B, C, and D to implement

the Z subsystem. Project Y uses the subsystems created by the X and Z projects,

represented by the baselines that these projects produce. Additionally, project Y

does custom work in component E.

The key attribute of managing the configuration is that all the code of a subsystem

is released together. To the development team, the important factor is that the

subsystem represents assets that can be easily reused. Designing a product, or a

family of products based on subsystems allows the development effort to be

divided into logical units. This organization simplifies the development efforts,

allows better management for risk, and provides opportunities for code reuse.

The key aspect of this organization is that each project has access to two classes of

components: modifiable components and read-only components. Each project does

its development work on modifiable components, and only one project can modify

these components. The read-only components are shared, but projects do not plan

to modify the read-only components, because that violates the sharing model.

Accordingly, these shared components are specified to be read-only in the project.

The teams in a development group with this type of project organization are

restricted to a limited number of components that they can modify. Because the

lower level components can be shared, the changes must be made in a central,

compatible manner, in the project dedicated to that component. For example, if

project Y needs changes in the A and C components, that work must be done in

project X.

In a component-oriented organization, each project has more freedom in selecting

baselines of shared components. Because these shared components are not

modified by the project, theoretically the project should be able to change from one

version of a shared component to any other version of that component. The

component-oriented project organization works well when components are loosely

coupled with well-defined interfaces. This type of project organization tends to

promote component reuse more effectively than the release-oriented project

organization does.

AC.BL0

Project X

AC.BL1

E.BL0

Project Y

ABCDE.BL1

BCD.BL0

Project Z

BCD.BL1

A B C D E

Figure 42. Structure for component-oriented projects

144 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Composite baselines in component-oriented projects

In component-oriented projects, significant savings can be realized by modeling

subsystems with composite baselines. For example, projects that integrate the

subsystems can rebase to a single baseline to configure a subsystem.

When composite baselines are used to model subsystems, they are logical

components built of smaller components. The components used in constructing a

subsystem are either shared (read-only) or modifiable (they contain the work

particular to that subsystem). The important property of the shared components is

that they are non-modifiable. If a subsystem requires changes to a shared

component, that requirement can interfere with the ability to share that component.

The modifiable, custom components store the code that is needed to integrate the

shared components and to provide the unique functions of the subsystem (see

Figure 43).

Project Y is composed of the custom component E and the components AC and

BCD, which both share component C. It does not matter whether baseline E.BL1 is

a product, a .DLL, a lower-level library, or another component.

In the composite baseline E.BL1, a component-oriented approach to development

can be more prone to baseline conflicts than a release-oriented approach. The

frequency of baseline conflicts depends on the following factors.

v The number of shared components

v The processes in the development organization

v The coordination among the different teams developing subsystems

The more closely the teams that produce each component coordinate their work,

the less likely conflicts will occur.

If development teams need complete freedom in selecting baselines of the

components that they use, conflicts are more likely. Conflicts occur because of the

difficulty in ensuring that a random baseline of one component, for example, AC,

will work with a random baseline of another component.

Baseline E.BL1 can be considered as consuming baselines AC.BL1 and BCD.BL1.

However, it is not a true producer and consumer relationship. Composite baseline

E.BL1 is not using the AC.BL1 baseline; it is using AC.BL1 plus the override,

baseline Cx.BL3 (see Figure 43). Therefore, baseline E.BL1 is not actually using the

product of project X. The X project does produce AC baselines, but, in a situation

with conflicts, the baseline is a guideline rather than a rule for projects that need

the AC component.

AC.BL1

A.BL1 C.BL3

BCD_BL1 E_BL0

Cx.BL3

B.BL1 C.BL1 D.BL1

E.BL1

Project Y

Override

Figure 43. Composite baselines representing subsystems

Chapter 9. Managing multiple projects 145

If these subsystems were in a release-oriented organization, composite baselines

would represent a tight coupling of baselines, for example, baselines A.BL1 and

C.BL3 shall be used to make baseline AC.BL1. But in a component-oriented

organization, composite baselines represent a looser coupling, that is, baselines

A.BL1 and C.BL3 should be used to make baseline AC.BL1. But the project

integrator can chose to override the coupling between baselines. Therefore, in a

component-oriented organization of projects, a composite baseline is more of an

indication of the components that should be used to create a subsystem rather than

a requirement to use them.

Therefore, selecting a baseline override in a component-oriented organization

needs to be careful and deliberate. Project integrators need to be aware that, in

selecting a baseline override, they are changing the decisions made by the project

that produced the component. There might be specific reasons why the BCD

component is compatible with the C.BL1 baseline, for example, a different baseline

could cause the component to fail. Often, using a descendant of baseline C.BL1 is

successful, but the selection of override baselines is not restricted in the ClearCase

environment. There is no guarantee of the relationship between baseline C.BL1 and

the override baseline Cx.BL3.

As the time approaches for a component to be completed, the use of baseline

overrides can be destabilizing to a product, because they can represent significant

code differences. These differences can be managed by coordinating the work of

the projects that produce each subsystem. As the time for completing a component

approaches, the teams can agree on the lower-level components so that conflicts

are reduced.

Bootstrap projects

If baseline relationships are known at the start of development and they do not

change much after that, you can use a bootstrap project to configure other projects

with a single composite baseline as the foundation baseline.

When you create a composite baseline for a project, the foundation baselines of the

integration stream are not affected. After the creation of the composite baseline, the

foundation of the stream still contains the baselines of the individual member

components. For development streams in the project to appropriately use the

composite baseline, you simply recommend just the composite baseline in the

integration stream. If all the member baselines remain listed in the foundation of

the integration stream, individual developers who have to rebase to the

recommended baseline can be confused by multiple baselines being listed.

To reduce the confusion, set up a special project to “bootstrap” the composite

baseline for other projects. The bootstrap project includes all of the components in

its foundation. You create the composite baseline in the bootstrap project and then

create a development project with this initial composite baseline as its foundation.

As a result, in the development project, the integration stream and the

development streams have similar foundation sets. The project integrators do not

have to keep track of the individual baselines, since the project can start with a

single, all-inclusive composite baseline. Developers in the projects that follow are

less likely to be confused when they select a baseline during a rebase operation.

Mixing project organizations

The strategy for project organizations is usually dictated by the size, structure, and

philosophy of the development team. UCM supports both release-oriented and

146 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

component-oriented projects. You can mix the two strategies, so that some projects

produce certain components, and other projects integrate components into a

release.

About managing multiple projects

Most project managers and project integrators manage a single project. However,

you may need to manage multiple releases of a project simultaneously. To do so,

you need to merge changes from one project to another. You can accomplish that

merging in the following common scenarios:

v Managing a current project and a follow-on project simultaneously

v Migrating unfinished work to a follow-on project

v Incorporating a patch release into a new release of the project

v Delivering work to another project

v Sharing baselines between sibling streams

You can also use base ClearCase tools to merge work from a UCM project to a base

ClearCase project (see “Merging from a project to a non-UCM branch” on page

152).

Managing a current project and a follow-on project

simultaneously

Given the tight software development schedules that most organizations operate

within, it is common practice to begin development of the next release of a project

before work on the current release is completed. The next release may add new

features, or it may involve porting the current release to a different platform.

Figure 44 illustrates the flow of a current project, Webotrans 4.0, and a follow-on

project, Webotrans 4.1.

In this example in Figure 44, note the following points:

v The project manager for the follow-on project created the Webotrans 4.1 project

based on the Beta baselines of the components used in the Webotrans 4.0 project.

Developers on both project teams then continued to make changes, and the 4.0

and 4.1 integrators continued to create new baselines that incorporate those

changes.

v When the 4.0 team completed its work, the integrator created the final baselines,

named FCS. The 4.1 project manager then rebased the 4.1 integration stream to

the FCS baselines.

Chapter 9. Managing multiple projects 147

To rebase an integration stream to baselines of another

project

 1. In Project Explorer, select the integration stream that you want to rebase.

 2. Click Tools > Rebase Stream.

 3. In the Rebase Stream Preview window, click Advanced.

 4. In the Change Rebase Configuration window, select a component that contains

the baseline you want to use to rebase your stream. Click Change.

 5. In the Change Baseline window:

On the Windows system, click Change.

On Linux and the UNIX system, click the arrow at the end of the From

Stream field.

 6. On the Windows system, in the Choose Stream window, navigate to the

integration stream of the other project. Select the integration stream and click

OK.

On Linux and the UNIX system, select the integration stream of the other

project.

Create project

Project Webotrans 4.0

Project Webotrans 4.1

BL1

FCS

Beta

BL2

Beta

FCS

Rebase
integration stream

Activity

Integration
stream

Figure 44. Managing a follow-on release

148 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

This updates the Change Baseline window with the set of baselines available

in the other project integration stream.

 7. In the Change Baseline window, select the component. The Baselines list

displays all baselines available for the selected component in the other

project’s integration stream. Select the baseline to which you want to rebase

your integration stream. Click OK. The baseline that you selected now

appears in the Change Rebase Configuration window.

 8. Repeat Step 4 on page 148 through Step 7 on page 149 until you finish

selecting the set of baselines to which you want to rebase your integration

stream.

 9. Click OK to close the Change Rebase Configuration window. Click OK in the

Rebase Stream Preview window.

10. All nonconflicting changes are merged automatically. If there are conflicting

changes, a prompt asks you whether to start Diff Merge, a tool with which

you resolve conflicting changes. For details on using Diff Merge, see the Diff

Merge Help and Developing Software online help.

Tip: You can rebase your project’s integration stream only if the baseline to which

you are rebasing is a successor of the current foundation baseline of your

integration stream. In the previous example, the FCS baseline is a successor to

the Beta baseline, which is the current foundation baseline for the Webotrans

4.1 integration stream.

Migrating unfinished work to a follow-on project

A development stream in one project can deliver its activities to a cousin stream in

another project (see Figure 45).

Work is in progress in project PA, but must be delivered before work in stream DA

can be completed. Follow-on work continues in project PB which starts from

PA.BL1

PA.BL1

PB.BL1

Project PA

Project PB

a1

Deliver operation

DB.BL1

DA.BL2

PA.BL2

Stream DA

PA.BL2

PB.BL1

Stream DB

Figure 45. Alternate target inter-project deliver operation

Chapter 9. Managing multiple projects 149

recommended baselines PA.BL2 in the integration stream of project PA. (The

integration streams in projects PA and PB are siblings because they share a parent,

project PA.)

You can migrate the changes in activity a1 to a cousin stream DB in project PB by

using an alternate target deliver operation. Only the changes in activity a1 are

delivered because the remaining contents of stream DA are in stream DB. Work on

the feature that started in stream DA can be continued in stream DB.

Incorporating a patch release into a new version of the project

A common development scenario with multiple projects involves working on a

patch release and a new release of a project at the same time. Figure 46 illustrates

the flow of a patch release and a new release.

In this example shown in Figure 46:

v Both the Webotrans 3.0 Patch and Webotrans 4.0 projects use the FCS baselines

of the components in the Webotrans 3.0 project as their foundation baselines.

Create projects

Project Webotrans 3.0

Project Webotrans 3.0
Patch

Project Webotrans 4.0

FCS

BL1

BL2

FCS

merge

FCS

BL1

BL2

Figure 46. Incorporating a patch release

150 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The purpose of the patch release is to fix a problem detected after Webotrans 3.0

was released. Webotrans 4.0 represents the next major release of the Webotrans

product.

v Development continues in both the 3.0 Patch and 4.0 projects, with the

integrators creating baselines periodically.

v The developers working on the 3.0 Patch project finish their work, and the

integrator incorporates the final changes in the BL2 baseline. The integrator then

needs to deliver those changes from the 3.0 Patch integration stream to the 4.0

integration stream so that the 4.0 project contains the fix.

Delivering work from an integration stream to another project

You can deliver work from an integration stream in one project to an integration

stream in another project. When you deliver work from an integration stream, you

must deliver baselines.

To deliver work between integration streams

1. In the source stream, make one or more baselines that incorporate the changes

you want to deliver.

2. Check the deliver policy settings for the target integration stream to confirm

that it allows deliveries from other projects. In the Project Explorer, select the

target integration stream, and click File > Policies. If the Allow interproject

deliver to project or stream policy is not enabled, ask the project manager to

change the setting to enabled.

3. In the Project Explorer, select the source integration stream, and click Tools >

Deliver Baselines To Default or Deliver To Alternate Target. To determine the

default deliver target for the integration stream, select the stream and click

File > Properties. The Deliver to box on the General tab identifies the default

deliver target. You can change the default deliver target by clicking Change.

The Deliver To Alternate Target option opens the Deliver from Stream

(alternate target) window, which lets you select the target stream.

4. In the Deliver from Stream Preview window, use Add, Change, and Remove to

select the baselines that you want to deliver. Make sure that the View box

identifies a view that is attached to the target integration stream. If necessary,

click Change to select a different view. Click OK to start the merge part of the

deliver operation.

5. All nonconflicting changes are merged automatically. If there are conflicting

changes, a prompt asks you whether to start Diff Merge, a tool with which you

resolve conflicting changes. For details on using Diff Merge, see the Diff Merge

Help and Developing Software online help.

6. When you finish merging files, test the result. When the testing is complete,

click Complete to check in the changes.

Sharing baselines between sibling streams in different

projects

Baselines can be used with rebase and deliver operations to configure streams with

changes from related streams in different projects (Figure 47).

Chapter 9. Managing multiple projects 151

The integrators rebase the integration stream in the Webotrans 3.0 Patch project to

baselines BL1 and BL2 from the Webotrans 4.0 project. Rebasing in this situation

allows the integrators to test and validate the patch with ongoing development in

the follow-on project. When the integrators deliver the patch changes in the FINAL

baseline, the process of testing and validating the patch in Webotrans 4.0

integration stream is made much easier.

Note: From an integration stream, you can deliver only baselines and not

individual activities.

Merging from a project to a non-UCM branch

You may be in a situation in which part of the development team works in a UCM

project, and the rest of the team works in base ClearCase. If you are a longtime

Rational ClearCase user, you may decide to use UCM initially on a small part of

your system. This approach would allow you to migrate from base ClearCase to

UCM gradually, rather than all at once.

In this case, you need to merge work periodically from the integration stream of

the project to the branch that serves as the integration branch for the system. To do

so, use a script similar to the one shown here, which uses base ClearCase

functionality to merge changes.

Sample Perl script for delivering contents of one UCM project to

a nonUCM project. Run this script while set to a view that sees the

destination branch.

Usage: Perl <this-script> <project-name> <project-vob>

use strict;

my $mergeopts = ’–print’;

my $project = shift @ARGV;

my $pvob = shift @ARGV;

my $bl;

FCS

Project Webotrans 4.0

Project Webotrans 3.0 Patch

a1, a2, a3

Deliver operation

Rebase operation

BL3

BL2

BL1

FCS

FINAL

BL2

BL1

Figure 47. Baselines distributed to a different project

152 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

chdir ($pvob) or die("can’t cd to project VOB ’$pvob’");

print("######## Getting recommended baselines for project

’$project’\n");

my @recbls = split(’ ’, ‘cleartool lsproject –fmt "%[rec_bls]p"

$project‘);

foreach $bl (@recbls) {

 my $comp = ‘cleartool lsbl –fmt "%[component]p" $bl‘;

 my $vob = ‘cleartool lscomp –fmt "%[root_dir]p" $comp‘;

 print("######## Merging changes from baseline ’$bl’ of $vob\n");

 my $st = system("cleartool findmerge $vob –fver $bl $mergeopts");

 $st == 0 or die("findmerge error");

}

exit 0;

The script finds the recommended baselines for the integration stream from which

you are merging. It then uses the cleartool findmerge command to find differences

between the versions represented by those recommended baselines and the latest

versions in the target branch. For details, see the findmerge reference page.

You can add error handling and other logic appropriate for your site to this script

before using it.

Chapter 9. Managing multiple projects 153

154 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 3. Working in base ClearCase

© Copyright IBM Corp. 1992, 2006 155

156 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 10. Managing projects in base ClearCase

This chapter describes base ClearCase project management.

About base ClearCase project management

A project manager is responsible for planning, staffing, and managing the technical

aspects of a software development project. You decide what will be worked on,

assign work to team members of the project, establish the work schedule, and

perhaps the policies and procedures for doing the work.

When development is underway, you monitor progress and generate project status

reports. You may also approve the specific work items included in a build and

subsequently a baseline.

You may also be the project integrator, responsible for incorporating work that

each developer completes into a deliverable and buildable system. You create the

project’s baselines and establish the quality level of those baselines.

In the base ClearCase configuration, many features are offered to make this work

easier. Before development begins, you need to complete several planning and

setup tasks:

v Setting up the project environment

v Implementing development policies

v Defining and implementing an integration policy

This chapter introduces these topics. The remaining chapters cover the

implementation details. Chapter 16, “Using Rational ClearCase throughout the

development cycle,” on page 241, follows a project throughout the development

cycle to show how you can use Rational ClearCase features.

Before reading project management, read Developing Software online help to become

familiar with the concepts of VOBs, views, and config specs.

Setting up the project

You need to do planning and setup work before development begins.

v “Creating and populating VOBs” on page 157

v “Planning a branching strategy” on page 158

v “Creating shared views and standard config specs” on page 159

v “Recommendations for view names” on page 159

Creating and populating VOBs

If your project is migrating to Rational ClearCase version control from another

version control product or is adopting a configuration and change management

plan for the first time, you must populate the VOBs for your project with an initial

collection of data (file and directory elements). If your site has a dedicated Rational

ClearCase administrator, he or she may be responsible for creating and maintaining

VOBs, but not for importing data into them.

© Copyright IBM Corp. 1992, 2006 157

The IBM Rational ClearCase Administrator’s Guide includes detailed information on

these topics.

Planning a branching strategy

Branches are used to enable parallel development. A branch is an object that

specifies a linear sequence of versions of an element. Every element has one main

branch, which represents the principal line of development, and may have multiple

subbranches, each of which represents a separate line of development. For

example, a project team can use two branches concurrently: the main branch for

new development work and a subbranch to fix a bug. The aggregated main

branches of all elements constitutes the main branch of a code base.

Subbranches can have subbranches. For example, a project team designates a

subbranch for porting a product to a different platform; the team then decides to

create a bug-fixing subbranch off that porting subbranch. In a Rational ClearCase

configuration, you can create complex branch hierarchies, for example, a multilevel

branching hierarchy like that shown in Figure 1 on page 4. As a project manager in

such an environment, you need to ensure that developers are working on the

correct branches. To do that, you must tell them which rules to include in their

config specs so that their views access the appropriate set of versions.

Chapter 11, “Defining project views,” on page 163, describes config specs and

branches in detail. Before you read it, a little background on branching strategies

may be helpful.

Branching policy is influenced by the development objectives of the project and

provides a mechanism to control the evolution of the code base. There are as many

variations of branching policy as organizations that use Rational ClearCase version

control. But there are also similarities that reflect common adherence to best

practices.

Some of the more common branching types and uses are:

v Task branches

Are short-lived, typically involve a small percentage of files, and are merged

into their parent branch after the task is completed. Task branches promote

accountability by leaving a permanent audit trail that associates a set of changes

with a particular task; they also make it easy to identify the task artifacts, such

as views and derived objects, that can be removed when they are no longer

needed. If individual tasks do not require changes to the same files, it is easy to

merge a task branch to its parent.

v Private development branches

Are useful when a group of developers need to make a more comprehensive set

of changes on a common code base. By branching as much of the main branch

as needed, developers can work in isolation as long as necessary. Merging back

to the main branch can be simplified if, before merging, each developer merges

the main branch to the private branch to resolve any differences there before

checking in the changed files.

v Integration branches

Provide a buffer between private development branches and the main branch

and can be useful if you delegate the integration task to one person, rather than

making developers responsible for integrating their own work.

158 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Branch names

It is a good idea to establish naming conventions that indicate the work the branch

contains. For example, rel2.1_main is the branch on which all code for Release 2.1

ultimately resides, rel2.1_feature_abc contains changes specific to the ABC feature,

and rel2.1_bl2 is the second stable baseline of Release 2.1 code. (If necessary,

branch names can be much longer and more descriptive, but long branch names

can crowd a version tree display.)

Note: Make sure that you do not create a branch type with the same name as a

label type. This can cause problems when config specs use labels in version

selectors. For example, make all branch names lowercase, and make all label

names uppercase.

Branches and Rational ClearCase MultiSite

Product Note: Rational ClearCase LT does not support Rational ClearCase

MultiSite.

Branches are particularly important when your team works in VOBs that have

been replicated to other sites with the Rational ClearCase MultiSite product.

Developers at different sites work on different branches of an element. This scheme

prevents collisions, for example, developers at two sites creating version /main/17

of the same element. In some cases, versions of files cannot or should not be

merged, and developers at different sites must share branches. For more

information, see “Certain branches are shared among Rational ClearCase MultiSite

sites” on page 187.

Creating shared views and standard config specs

As a project manager, you want to control the config specs that determine how

branches are created when developers check out files. There are several ways to

handle this task:

v Create a config spec template that each developer must use. Developers can

either paste the template into their individual config specs or use the Rational

ClearCase include file facility to get the config spec from a common source.

v Create a view that developers will share. This is usually a good way to provide

an integration view for developers to use when they check in work that has

evolved in isolation on a private branch.

Note: Working in a single shared view can degrade system performance.

v To ensure that all team members configure their views the same way, you can

create files that contain standard config specs. For example:

– /public/config_specs/ABC contains the ABC team config spec

– /public/config_specs/XYZ contains the XYZ team config spec

Store these config spec files in a standard directory outside a VOB, to ensure that

all developers get the same version.

Recommendations for view names

You may want to establish naming conventions for views for the same reason that

you do for branches: it is easier to associate a view with the task it is used for. The

Rational ClearCase view-creation tools suggest appropriate view names, but you

may want to use something different. For example, you can require all view names

(called view tags) to include the owner’s name and the task (bill_V4.0_bugfix) or

the name of the computer hosting the view (platinum_V4.0_int).

Chapter 10. Managing projects in base ClearCase 159

Implementing development policies

To enforce development policies, you can create Rational ClearCase metadata to

preserve information about the status of versions. To monitor the progress of the

project, you can generate a variety of reports from this data and from the

information captured in event records.

Using labels

A label is a user-defined name that can be attached to a version. Labels are a

powerful tool for project managers and system integrators. By applying labels to

groups of elements, you can define and preserve the relationship of a set of file

and directory versions to each other at a given point in the development life cycle.

For example, you can apply labels to these versions:

v All versions considered stable after integration and testing. Use this baseline

label as the foundation for new work.

v All versions that are partially stable or contain some usable subset of

functionality. Use this checkpoint label for intermediate testing or as a point to

which development can be rolled back in the event that subsequent changes

result in regressions or instability.

v All versions that contain changes to implement a particular feature or that are

part of a patch release.

Using attributes, hyperlinks, triggers, and locks

Attributes are name/value pairs that allow you to capture information about the

state of a version from various perspectives. For example, you can attach an

attribute named CommentDensity to each version of a source file, to indicate how

well the code is commented. Each such attribute can have the value unacceptable,

low, medium, or high.

Hyperlinks allow you identify and preserve relationships between elements in one

or more VOBs. This capability can be used to address process-control needs, such

as requirements tracing, by allowing you to link a source file to a requirements

document.

Triggers allow you to control the behavior of cleartool commands and Rational

ClearCase operations by arranging for a specific program or executable script to

run before or after the command executes. Virtually any operation that modifies an

element can fire a trigger. Special environment variables make the relevant

information available to the script or program that implements the procedure.

Preoperation triggers fire before the designated Rational ClearCase command is

executed. A preoperation trigger on checkin can prompt the developer to add an

appropriate comment. Postoperation triggers fire after a command has exited and

can take advantage of the command’s exit status. For example, a postoperation

trigger on the checkin command can send an e-mail message to the QA

department, indicating that a particular developer modified a particular element.

Triggers can also automate a variety of process management functions. For

example:

v Applying attributes or attaching labels to objects when they are modified

v Logging information that is not included in the Rational ClearCase event records

v Initiating a build and/or source code analysis whenever particular objects are

modified

160 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

For more information on these mechanisms, see Chapter 12, “Implementing project

development policies,” on page 179.

A lock on an element or directory prevents all developers (except those included

on an exception list) from modifying it. Locks are useful for implementing

temporary restrictions. For example, during an integration period, a lock on a

single object—the main branch type—prevents all users who are not on the

integration team from making any changes.

The effect of a lock can be small or large. A lock can prevent any new development

on a particular branch of a particular element; another lock can apply to the entire

VOB, preventing developers from creating any new element of type

compressed_file or using the version label RLS_1.3.

Locks can also be used to retire names, views, and VOBs that are no longer used.

For this purpose, the locked objects can be tagged as obsolete, effectively making

them invisible to most commands.

Global types

The Rational ClearCase global type facility makes it easy for you to ensure that the

branch, label, attribute, hyperlink, and element types they need are present in all

VOBs your project uses. The IBM Rational ClearCase Administrator’s Guide has more

information about creating and using global types.

Generating reports

An event record is created and stored each time an element is modified or merged.

Many Rational ClearCase commands include selection and filtering options that

you can use to create reports based on these records. The scope of such reports can

cover a single element for a set of objects or for entire VOBs.

You can use event records and metadata to implement project policies. (For more

detail, see Chapter 12, “Implementing project development policies,” on page 179.)

Event records and other metadata can also be useful if you need to generate

reports on activities managed by Rational ClearCase operations (for example, the

complete history of changes to an element). a variety of report-generation tools are

provided. For more information on this topic, see the fmt_ccase reference page in

the IBM Rational ClearCase Command Reference.

Integrating changes

During the lifetime of a project, the contents of individual elements diverge as they

are branched and usually converge in a merge operation. Typically, the project

manager periodically merges most branches back to the main branch to ensure that

the code base maintains a high degree of integrity and to have a single latest

version of each element from which new versions can safely branch. Without

regular merges, the code base quickly develops a number of dangling branches,

each with slightly different contents. In such situations, a change made to one

version must be propagated by hand to other versions, a tedious process that is

prone to error.

As a project manager, you must establish merge policies for your project. Typical

policies include the following:

v Developers merge their changes to the main branch. This can work well when

the number of developers or the number of changed files is small and the

developers are familiar with the mechanics of merging. Developers must also

Chapter 10. Managing projects in base ClearCase 161

understand the nature of other changes they may encounter when the merge

target is not the immediate predecessor of the version being merged, which

happens when several developers are working on the same file in parallel.

v Developers merge their changes to an integration branch. This provides a buffer

between individual developers’ merges and the main branch. The project

manager or system integrator then merges the integration branch to the main

branch.

v Developers must merge from the main branch to their development branch

before merging to the main branch or integration branch. This type of merge

promotes greater stability by forcing merge-related instability to the developers’

private branches, where problems can be resolved before they affect the rest of

the team.

v The project manager designates slots for developer merges to the main branch.

This is a variation on several of the mechanisms already described. It provides

an additional level of control in situations where parallel development is going

on.

For more information about merging, see Chapter 14, “Integrating changes,” on

page 219.

162 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 11. Defining project views

This chapter explains project views in a base ClearCase environment.

About defining project views

You need to know how config specs work and understand how config specs are

useful for project development work, for nondevelopment tasks such as monitoring

progress and doing research, and for running project builds. It also may be

necessary to know how to share config specs among the Windows system, Linux,

and the UNIX system.

How config specs work

When you create views for your project, you must prepare one or more config specs

(configuration specifications). Config specs allow you to achieve the degree of

control that you need to have over project work by controlling which versions

developers see and what operations they can perform in specific views. You can

narrow a view to a specific branch or open it to an entire VOB. You can also

disallow checkouts of all selected versions or restrict checkouts to specific

branches.

A config spec contains a series of rules that are used to select the versions that

appear in the view. When team members use a view, they see the versions that

match at least one of the rules in the config spec. The version tree of each element

is searched for the first version that matches the first rule in the config spec. If no

versions match the first rule, a version that matches the second rule is sought. If no

versions of an element match any rule in the config spec, no versions of the

element appear in the view.

The order in which rules appear in the config spec determine which version of a

given element is selected. The various examples in this chapter examine this

behavior in different contexts. For details about preparing config specs, see the

config_spec reference page.

Default config spec

The following config spec defines a dynamic configuration:

(1) element * CHECKEDOUT

(2) element * /main/LATEST

 The config spec selects changes made on the main branch of every element

throughout the entire source tree, by any developer. This is the default config spec,

to which each newly created view is initialized.

When you create a view with the mkview command or the View Creation Wizard

(the Windows system only), the contents of file default_config_spec (located in

ccase–home–dir) become the config spec of the new view. A view with this config

spec provides a private work area that selects your checked-out versions (Rule 1).

By default, when you check out a file, you check out from the latest version on the

main branch (Rule 2). While an element is checked out to you, you can change it

without affecting anyone else’s work. When you check in the new version, the

changes are available to developers whose views select /main/LATEST versions.

© Copyright IBM Corp. 1992, 2006 163

The view also selects all other elements (that is, all elements that you have not

checked out) on a read-only basis. If another user checks in a new version on the

main branch of such an element, the new LATEST version appears in this dynamic

view immediately.

By default, snapshot views also include the two version selection rules shown above.

In addition, snapshot view config specs include load rules, which specify which

elements or subtrees to load into the snapshot view. For details on creating

snapshot views, see Developing Software online help.

Product Note: Rational ClearCase LT supports only snapshot views.

The standard configuration rules

The two configuration rules in the default config spec appear in many of this

chapter examples. The CHECKEDOUT rule allows you to modify existing

elements. If you try to check out elements in a view that omits this rule, you can

do so, but cleartool generates the following warning:

% cleartool checkout –nc cmd.c

cleartool: Warning: Unable to rename "cmd.c" to "cmd.c.keep":

Read-only filesystem.

cleartool: Error: Checked out version, but could not copy to "cmd.c":

File exists.

Correct the condition, then uncheckout and re-checkout the element.

cleartool: Warning: Copied checked out version to "cmd.c.checkedout".

cleartool: Warning: Checked-out version is not selected by view.

Checked out "cmd.c" from version "/main/7".

In this example, the config spec continues to select version 7 of element cmd.c,

which is read-only. A read-write copy of this version, cmd.c.checkedout, is created

in view-private storage. (This is not a recommended way of working.)

The /main/LATEST rule selects the most recent version on the main branch to

appear in the view.

In addition, a /main/LATEST rule is required to create new elements in a view. If

you create a new element when this rule is omitted, your view does not select that

element. (Creating an element involves creating a main branch and an empty

version, /main/0.)

Omitting the standard configuration rules

It makes sense to omit one or both of the standard configuration rules only if a

view is not going to be used to modify data. For example, you can configure a

historical view, to be used only for browsing old data. Similarly, you can configure

a view in which to compile and test only or to verify that sources have been

labeled properly.

Config spec include files

An include file facility makes it easy to ensure that all team members are using the

same config spec. For example, the configuration rules in this config spec can be

placed in file /public/c_specs/major.csp. Each developer then needs the following

one-line config spec:

(1) include /public/c_specs/major.csp

Note: If you are sharing config specs among Linux, the UNIX system, and

Windows computers where the VOB tags are different, you must have two

164 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

sources, or you must store the config spec in a directory on Linux and the

UNIX system that is also accessible from the Windows platform.

If you want to modify this config spec (for example, to adopt the

no-directory-branching policy), only the contents of major.csp need to change.

To reconfigure your view with the modified config spec

Use this command:

cleartool setcs –current

This command causes the view server to flush its caches and reevaluate the current

config spec.

Project environment for sample config specs

You can use different config specs for different kinds of development and

management tasks. The three sections that follow present sample config specs

useful for various aspects of project development, project management and

research, and project builds. This section presents the development environment

that these config specs are based on.

Developers use a VOB whose VOB tag is /vobs_monet, which has this structure:

 /vobs/monet (VOB tag, VOB mount point)

src/ (C language source files)

include/ (C language header files)

lib/ (project libraries)

For the purposes of this chapter, suppose that the lib directory has this

substructure:

 lib/

libcalc.a (checked-in staged version of

library)

libcmd.a (checked-in staged version of

library)

libparse.a (checked-in staged version of

library)

libpub.a (checked-in staged version of

library)

libaux1.a (checked-in staged version of

library)

libaux2.a (checked-in staged version of

library)

libcalc/ (sources for calc library)

libcmd/ (sources for cmd library)

libparse/ (sources for parse library)

libpub/ (sources for pub library)

libaux1/ (sources for aux1 library)

libaux2/ (sources for aux2 library)

Sources for libraries are located in subdirectories of lib. After a library is built in

its source directory, it can be staged to /vobs_monet/lib.

Chapter 11. Defining project views 165

On Linux and the UNIX system, the build scripts for the project executable

programs can instruct the link editor, ld(1), to use the libraries in this directory (the

library staging area) instead of a more standard location (for example,

/usr/local/lib).

On the Windows system, you can use the libraries in this directory (the library

staging area) instead of a more standard location by setting the LIB environment

variable or by changing the makefile.

The following labels are assigned to versions of vobs_monet elements.

Version Labels Description

R1.0 First customer release

R2_BL1 Baseline 1 prior to second customer release

R2_BL2 Baseline 2 prior to second customer release

R2.0 Second customer release

 These version labels have been assigned to versions on the main branch of each

element. Most project development work takes place on the main branch. For some

special tasks, development takes places on a subbranch.

Subbranches Description

major Used for work on the application’s graphical user

interface, certain computational algorithms, and

other major enhancements

r1_fix Used for fixing bugs in Release 1.0

Windows Note: Config specs allow absolute VOB paths—absolute paths that begin

with a VOB tag but do not include a drive or view tag prefix.

This form of path is required to specify VOB elements without

regard for current drive assignments or active views. For example:

\vob_gopher\lib*

(absolute VOB path, where \vob_gopher is the VOB tag)

\monet\src*

(absolute VOB path, where \monet is the VOB tag)

Z:\monet\src*

(drive-specific path; not recommended)

M:\myview\vob_gopher\lib*

(view-extended path; not recommended)

Views for project development

The config specs in this section are useful for project development because they

enforce various branching policies.

View for new development on a branch

You can use this config spec for work to be isolated on branches named major:

(1) element * CHECKEDOUT

(2) element * .../major/LATEST

(3) element * BASELINE_X –mkbranch major

(4) element * /main/LATEST –mkbranch major

In this scheme, all checkouts occur on branches named major (Rule 2).

166 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The major branches are created at versions that constitute a consistent baseline: a

major release, a minor release, or a set of versions that produces a working version

of the application. In this config spec, the baseline is defined by the version label

BASELINE_X.

Variation that uses a time rule

Other developers can check in versions that become visible in your view, but are

incompatible with your own work. In such cases, you can continue to work on

sources as they existed before those changes were made. For example, Rule 2 in

this config spec selects the latest version on the main branch as of 4:00 P.M. on

November 12:

(1) element * CHECKEDOUT

(2) element * /major/LATEST –time 12-Nov.16:00

(3) element * BASELINE_X –mkbranch major

(4) element * /main/LATEST –mkbranch major

Note that this rule has no effect on your own checkouts.

View to modify an old configuration

This config spec allows developers to modify a configuration defined with version

labels:

(1) element * CHECKEDOUT

(2) element * .../r1_fix/LATEST

(3) element * R1.0 –mkbranch r1_fix

Note the following points about the configuration:

v Elements can be checked out (Rule 1).

v The checkout command creates a branch named r1_fix at the initially selected

version (the auto-make-branch clause in Rule 3).

A key aspect of this scheme is that the same branch name, r1_fix, is used in every

modified element. The only administrative overhead is the creation of a single

branch type, r1_fix, with the mkbrtype command.

This config spec is efficient. Two rules (Rules 2 and 3) configure the appropriate

versions of all elements:

v For elements that have been modified, this version is the most recent on the

r1_fix subbranch (Rule 2).

v For elements that have not been modified, this version is the one labeled R1.0

(Rule 3).

Figure 48 illustrates these elements. The r1_fix branch is a subbranch of the main

branch. But Rule 2 handles the more general case, too. The ... wildcard allows the

r1_fix branch to occur anywhere in the version tree of any element, and at

different locations in the version trees of different elements.

Chapter 11. Defining project views 167

Omitting the /main/LATEST rule

The config spec in “View to modify an old configuration” on page 167 omits the

standard /main/LATEST rule. This rule is not useful for work with VOBs in which

the version label R1.0 does not exist. In addition, it is not useful in situations

where new elements are created. If your development policy is to not create new

elements during maintenance of an old configuration, the absence of a

/main/LATEST rule is appropriate.

To allow creation of new elements during the modification process, add a fourth

configuration rule:

(1) element * CHECKEDOUT

(2) element * /main/r1_fix/LATEST

(3) element * R1.0 –mkbranch r1_fix

(4) element * /main/LATEST –mkbranch r1_fix

When a new element is created with mkelem, the –mkbranch clause in Rule 4

causes the new element to be checked out on the r1_fix branch (which is created

automatically). This rule conforms to the scheme of localizing all changes to r1_fix

branches.

Variation that uses a time rule

This baseline configuration is defined with a time rule.

(1) element * CHECKEDOUT

(2) element * /main/r1_fix/LATEST

(3) element * /main/LATEST –time 4-Sep:02:00 –mkbranch r1_fix

View to implement multiple-level branching

This config spec implements and enforces consistent multiple-level branching.

(1) element * CHECKEDOUT

(2) element * .../major/autumn/LATEST

(3) element * .../major/LATEST –mkbranch autumn

(4) element * BASELINE_X –mkbranch major

(5) element * /main/LATEST –mkbranch major

A view configured with this config spec is appropriate in the following situation:

v All changes from the baseline designated by the BASELINE_X version label

must be made on a branch named major.

R1.0

0

1

2

3

4

main

0

1

2

3

0

1

r1_fix

main

Not ModifiedModified

2Created by
Rule 2

Selected by
Rule 3

Figure 48. Making a change to an old version

168 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v Moreover, you are working on a special project, whose changes are to be made

on a subbranch of major, named autumn.

Figure 49 shows what happens in such a view when you check out an element that

has not been modified since the baseline.

1. After an element is checked out, the mkbranch clause in Rule 4 creates the

major branch at the BASELINE_X version.

2. The mkbranch clause in Rule 3 creates the autumn branch at \main\major\0.

3. When the checkout operation finishes, Rule 2 applies; the most recent version,

\main\major\autumn\0, is checked out.

For more information about multiple-level branching, see the config_spec and

checkout reference pages.

View to restrict changes to a single directory

This config spec is appropriate for a developer who can make changes in one

directory only, /vobs/monet/src:

(1) element * CHECKEDOUT

(2) element src/* /main/LATEST

(3) element * /main/LATEST –nocheckout

The most recent version of each element is selected (Rules 2 and 3), but Rule 3

prevents checkouts to all elements except those in the directory specified.

Note that Rule 2 matches elements in any directory named src, in any VOB. The

pattern /vobs/monet/src/* restricts matching to only one VOB.

You can easily extend this config spec with additional rules that allow additional

areas of the source tree to be modified.

0

1

2 0

1

main

major

0

1

major

0

1

2

main

0

1

autumn

Rule 4 Rule 3 Rule 2

0

1

2 0

1

main

major

0

autumn

Figure 49. Multiple-level auto-make-branch

Chapter 11. Defining project views 169

Views to monitor project status

The config specs presented in “View that uses attributes to select versions” through

“Historical view defined by a version label” on page 173 are useful for views used

for research and monitoring project status.

View that uses attributes to select versions

Suppose that the QA team also works on the major branch. Individual developers

are responsible for making sure that their modules pass a QA check. The QA team

builds and tests the application, using the most recent versions that have passed

the check.

The QA team can work in a view that uses this config spec:

(1) element –file src/* /main/major/{QAOK=="Yes"}

(2) element * /main/LATEST

To make this scheme work, you must create an attribute type, QAOK. Whenever a

new version that passes the QA check is checked in on the major branch, an

instance of QAOK with the value Yes is attached to that version. (This can be done

manually or with a Rational ClearCase trigger.)

If an element in the /src directory has been edited on the major branch, this view

selects the branch’s most recent version that has been marked as passing the QA

check (Rule 1). If no version has been so marked or if no major branch has been

created, the most recent version on the main branch is used (Rule 2).

Tip: Rule 1 on this config spec does not provide a match if an element has a major

branch, but no version on the branch has a QAOK attribute. This command

can locate the branches that do not have this attribute:

 On Linux and the UNIX system:

 cleartool find . –branch ’{brtype(major) && \! attype_sub(QAOK)}’ –print

The backslash (\) is required in the C shell only, to keep the exclamation

point (!) from indicating a history substitution.

 On the Windows system:

 cleartool find . –branch "{brtype(major) && ! attype_sub(QAOK)}" –print

The attype_sub primitive searches for attributes on versions and branches of

an element and on the element itself.

This scheme allows the QA team to monitor the progress of the rest of the group

(see Figure 50).

170 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The development config spec always selects the most recent version on the major

branch, but the QA config spec may select an intermediate version.

Pitfalls for development of using attributes to select versions

You may be tempted to add a CHECKEDOUT rule to the config spec described in

“View that uses attributes to select versions” on page 170. This addition turns the

QA configuration into the following development configuration:

(0) element * CHECKEDOUT

(1) element –file src/* /main/major/{QAOK=="Yes"}

(2) element * /main/LATEST

It may seem desirable to use attributes, or other kinds of metadata, in addition to

(or instead of) branches to control version selection in a development view. But

such schemes introduce complications. Suppose that the config spec above selects

version /main/major/2 of element .../src/cmd.c (see Figure 51).

Version that the QA
config spec selects

Version that the
development config
spec selects

0

1

2

3

4

main

major

0

1

2

3

Figure 50. Development config spec versus QA config spec

Chapter 11. Defining project views 171

Performing a checkout in this view checks out version /main/major/3, not version

/main/major/2, and generates the following message:

cleartool: Warning: Version checked out is different from version

previously selected by view.

Checked out "cmd.c" from version "/main/major/3".

This behavior reflects the Rational ClearCase restriction that new versions can be

created only at the end of a branch. Although such operations are possible, they

are potentially confusing to other team members. And, in this situation, it is almost

certainly not what the developer who checks out the element wants to happen.

You can avoid the problem by making the following indicated changes in the

config spec:

(0) element * CHECKEDOUT

(0a) element * /main/major/temp/LATEST

(1) element –file src/* /main/major/{QAOK=="Yes"} –mkbranch temp

(2) element * /main/LATEST

The modified config spec creates another branching level at the version that the

attribute selects.

View that shows changes of one developer

The following config spec makes it easy to examine all changes that a developer

has made since a certain milestone:

(1) element * ’/main/{created_by(jackson) && created_since(25-Apr)}’

(2) element * /main/LATEST –time 25-Apr

Tip: Rule 1 must be contained on a single physical text line.

A particular date, April 25, is used as the milestone. The configuration is a

snapshot of the main line of development at that date (Rule 2), overlaid with all

changes that user jackson has made on the main branch since then (Rule 1).

Version that is selected
by config spec

Version that is
checked out

0

1

2

3

major

Figure 51. Checking out a branch of an element

172 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The output of the cleartool ls command distinguishes jackson’s files from the

others: each entry includes an annotation as to which configuration rule applies to

the selected version.

This is a research view, not a development view. The selected set of files may not

be consistent: some of jackson’s changes may rely on changes made by others, and

those other changes are excluded from this view. Thus, this config spec omits the

standard CHECKEDOUT and /main/LATEST rules.

Historical view defined by a version label

The following config spec defines a historical configuration:

(1) element * R1.0 –nocheckout

 This view always selects the set of versions labeled R1.0. In this scenario, all these

versions are on the main branch of their elements. If the R1.0 label type is

one-per-element, not one-per-branch, this config spec selects the R1.0 version on a

subbranch. (For more information, see the mklbtype reference page.)

The –nocheckout qualifier prevents any element from being checked out in this

view. (It also prevents creation of new elements, because the parent directory

element must be checked out.) Thus, there is no need for the CHECKEDOUT

configuration rule.

Tip: The set of versions selected by this view can change, because version labels

can be moved and deleted. For example, using the command mklabel

–replace to move R1.0 from version 5 of an element to version 7 changes

which version appears in the view. Similarly, using rmlabel suppresses the

specified elements from the view. (The cleartool ls command lists them with a

[no version selected] annotation.) If the label type is locked with the lock

command, the configuration cannot change.

You can use this configuration to rebuild Release 1.0, verifying that all source

elements have been labeled properly. You can also use it to browse the old release.

Historical view defined by a time rule

The following config spec defines a frozen configuration in a slightly different way

than the config spec that is described in “Historical view defined by a version

label”:

(1) element * /main/LATEST –time 4-Sep.02:00 –nocheckout

 This configuration selects the version that was the most recent on the main branch

on September 4 at 2 A.M. Subsequent checkouts and checkins cannot change which

versions satisfy this criterion; only deletion commands such as rmver or rmelem

can change the configuration. The –nocheckout qualifier prevents anyone from

checking out or creating elements.

This configuration can be used to view a set of versions that existed at a particular

point in time. If modifications must be made to this source base, you must modify

the config spec to “unfreeze” the configuration.

Chapter 11. Defining project views 173

Views for project builds

Certain config specs (described in “View that uses results of a nightly build”

through “View that selects versions that built a particular program” on page 175)

are useful for running the various types of builds that are required for a project.

View that uses results of a nightly build

Many projects use scripts to run unattended software builds every night. The

success or failure of these builds determine the impact of any checked-in changes

on the application. In layered build environments, the builds can also provide

up-to-date versions of lower-level software (for example, libraries and utility

programs).

Suppose that every night, a script does the following operations:

v Builds libraries in various subdirectories of /vobs/monet/lib

v Checks them in as DO versions in the library staging area, /vobs/monet/lib

v Labels the versions LAST_NIGHT

You can use the following config spec if you want to use the libraries produced by

the nightly builds:

(1) element * CHECKEDOUT

(2) element lib/*.a LAST_NIGHT

(3) element lib/*.a R2_BL2

(4) element * /main/LATEST

The LAST_NIGHT version of a library is selected whenever such a version exists

(Rule 2). If a nightly build fails, the previous build still has the LAST_NIGHT

label and is selected. If no LAST_NIGHT version exists (the library is not

currently under development), the stable version labeled R2_BL2 is used instead

(Rule 3).

For each library, selecting versions with the LAST_NIGHT label rather than the

most recent version in the staging area allows developers to stage new versions the

next day, without affecting developers who use this config spec.

Variations that select versions of project libraries

The scheme that is described in “View that uses results of a nightly build” uses

version labels to select particular versions of libraries. For more flexibility, other

versions can be selected as shown by the following added rules:

(1) element * CHECKEDOUT

(2a) element lib/libcmd.a LAST_NIGHT

(2b) element lib/libparse.a LAST_NIGHT

(3a) element lib/libcalc.a R2_BL2

(3b) element lib/*.a /main/LATEST

(4) element * /main/LATEST

 The LAST_NIGHT version of some libraries can be selected, the R2_BL2 version

of others, and the most recent version of still others. (Rule 3b is not required here,

because Rule 4 handles all other libraries. It is included for clarity only.)

Other kinds of metadata can also be used to select library versions. A config spec

can mix and match library versions as the following added rules indicate:

(1) element * CHECKEDOUT

174 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

(2) element lib/libcmd.a {lib_selector=="experimental"}

(3) element lib/libcalc.a {lib_selector=="experimental"}

(4) element lib/libparse.a {lib_selector=="stable"}

(5) element lib/*.a {lib_selector=="released"}

(6) element * /main/LATEST

 For example, lib_selector attributes can take values such as experimental, stable,

and released.

View that selects versions of application subsystems

The following config spec selects specific versions of the application subsystems:

(1) element * CHECKEDOUT

(2) element /vobs/monet/lib/... R2_BL1

(3) element /vobs/monet/include/... R2_BL2

(4) element /vobs/monet/src/... /main/LATEST

(5) element * /main/LATEST

In this situation, a developer is making changes to the application source files on

the main branch (Rule 4). Builds of the application use the libraries in directory

/lib that were used to build Baseline 1, and the header files in directory /include

that were used to build Baseline 2.

View that selects versions that built a particular program

The following config spec defines a view that selects only enough files that are

required to rebuild a particular program or examine its sources:

(1) element * –config /vobs/monet/src/monet

 All elements that were not involved in the build of monet appear in the output of

Rational ClearCase ls with a [no version selected] annotation.

This config spec selects the versions listed in the config record (CR) of a particular

derived object (and in the config records of all its build dependencies). It can be a

derived object that was built in the current view, or another view, or it can be a

DO version.

In this config spec, monet is a derived object in the current view. You can reference

a derived object in another view with an extended path that includes a DO-ID in

the following format:

(1) element * –config /vobs/monet/src/monet@@09-Feb.13:56.812

 But typically, this kind of config spec is used to configure a view from a derived

object that has been checked in as a DO version.

Configuring the makefile

By default, a derived object config record does not list the version of the makefile

that was used to build it. Instead, the config record includes a copy of the build

script itself. (Why? When a new version of the makefile is created with a revision

to one target build script, the configuration records of all other derived objects

built with that makefile are not rendered out of date.)

But if the monet program is to be rebuilt in this view using clearmake (or

standard make on Linux and the UNIX system or omake on the Windows system),

a version of the makefile must be selected somehow. You can have clearmake

Chapter 11. Defining project views 175

record the makefile version in the config record by including the special clearmake

macro invocation $(MAKEFILE) in the target dependency list in the following

formats:

 On the Windows system:

 monet.exe: $(MAKEFILE) monet.obj ...

 link –out:monet.exe monet.obj ...

 On Linux and the UNIX system:

 monet: $(MAKEFILE) monet.o ...

 cc –o monet ...

The clearmake command always records the versions of explicit dependencies in

the config record.

Alternatively, you can configure the makefile at the source level: attach a version

label to the makefile at build time, and then use a config spec like the one in

Historical view defined by a version label on page 173 or View to modify an old

configuration on page 167 to configure a view for building. You can also use the

special target .DEPENDENCY_IGNORED_FOR_REUSE. For more information,

see IBM Rational ClearCase Guide to Building Software.

Fixing bugs in the program

If a bug is discovered in the monet program, as rebuilt in a view that selects only

enough files required to rebuild a particular program, it is easy to convert the view

from a build configuration to a development configuration. As usual, when making

changes in old sources, follow this strategy:

v Create a branch at each version to be modified

v Use the same branch name (that is, create an instance of the same branch type)

in every element

If the fix branch type is r1_fix, this modified config spec reconfigures the view for

performing the fix in the following rules:

(1) element * CHECKEDOUT

(2) element * .../r1_fix/LATEST

(3) element * –config /vobs/monet/src/monet –mkbranch r1_fix

(4) element * /main/LATEST –mkbranch r1_fix

Selecting versions that built a set of programs

You can expand the config spec that selects only enough files required to rebuild a

particular program (see “View that selects versions that built a particular program”

on page 175). You can configure a view with the sources used to build a set of

programs, rather than to build a single program. Use a config spec similar to the

following one:

(1) element * –config /proj/monet/src/monet

(2) element * –config /proj/monet/src/xmonet

(3) element * –config /proj/monet/src/monet_conf

However, there can be version conflicts in such configurations. For example,

different versions of file params.h may have been used in the builds of monet and

xmonet. In this situation, the version used in monet is configured, because its

configuration rule came first. Similarly, there can be conflicts when using a single

–config rule. If the specified derived object was created by actually building some

targets and using DO versions of other targets, multiple versions of some source

files may be involved.

176 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

As described in “Fixing bugs in the program” on page 176, you can modify this

config spec to change the build configuration to a development configuration.

Sharing config specs among Linux, the UNIX system, and Windows

system

In principle, you can share config specs among Linux, the UNIX system, and the

Windows system. That is, users on all types of systems, using views whose storage

directories reside on another type of platform, can set and edit the same set of

config specs.

You should avoid sharing config specs across platforms. If possible, maintain

separate config specs for each platform. However, if you must share config specs,

adhere to the following requirements:

v Use slashes (/) in paths instead of backslashes (\).

v Use relative paths instead of full paths, whenever possible. And do not use VOB

tags in paths. You can ignore this requirement if your VOB tags on Linux, the

UNIX system, and Windows systems all use single, identical path components

that differ only in their leading slash characters, for example \src and /src.

v Always edit and set config specs on Linux or the UNIX system.

For more information, see “Path separators” on page 177, “Paths in config spec

element rules” on page 177, and “Config spec compilation” on page 178.

Path separators

When writing config specs to be shared by the Windows, Linux, and the UNIX

system, you must use slash (/) as the path separator instead of backslash (\). In

Rational ClearCase configurations on Linux or the UNIX system, only slashes are

recognized.

Tip: The cleartool command recognizes both slashes and backslashes in paths;

clearmake is less flexible. See IBM Rational ClearCase Guide to Building Software

for more information.)

Paths in config spec element rules

Network regions on the Windows system, Linux, and the UNIX system often use

different VOB tags to register the same VOBs. Only single-component VOB tags,

such as \proj1, are permitted on the Windows computer; multiple-component VOB

tags, such as /vobs/src, are common on Linux and the UNIX system.

When VOB tags differ between regions, any config spec element rules that use full

paths (which include VOB tags) can be resolved when the config spec is compiled

(cleartool edcs and setcs commands) but only by computers in the applicable

network region. This implies a general restriction regarding shared config specs: a

given config spec must be compiled only on the operating system for which full

paths in element rules make sense. That is, a config spec with full paths is

shareable across network regions, even when VOB tags disagree, but it must be

compiled in the right place.

The restrictions do not apply if either of the following is true (see “Config spec

compilation” on page 178):

v The config spec element rules use only relative paths, which do not include VOB

tags.

Chapter 11. Defining project views 177

v Shared VOBs are registered with identical, single-component VOB tags in the

network regions of the Windows system and Linux and the UNIX system. (The

VOB tags \r3vob and /r3vob are treated as if they were identical because they

differ only in the leading slashes.)

Config spec compilation

A config spec that is in use exists in both text file and compiled formats. A config

spec compiled form is portable. The restriction is that full VOB paths in element

rules must be resolvable at compile time. A config spec is compiled when you edit

or set it (with the cleartool edcs or cleartool setcs command or a Rational

ClearCase graphic user interface (GUI)). If a user on the other operating system

recompiles a config spec (by issuing the edcs or setcs command or causing the

GUI to execute one of these commands), the config spec becomes unusable by any

computer using that view. If this happens, recompile the config spec on the

original operating system.

The following config spec element rule may cause problems:

element \vob_p2\abc_proj_src* \main\rel2\LATEST

If the VOB is registered with VOB tag \vob_p2 on a Windows network region, but

with VOB tag /vobs/vob_p2 in the network region on Linux and the UNIX system,

only Windows computers can compile the config spec.

To address the problem, do one of the following:

v Use relative paths that do not include VOB tags, for example:

element ...\abc_proj_src* \main\rel2\LATEST

v On Linux and the UNIX system, change the VOB tag so that it has a single

component, for example, /vob_p2.

178 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 12. Implementing project development policies

This chapter presents scenarios that implement policies in a base ClearCase project.

About implementing project development policies

You need to know how to implement and enforce common development policies

with Rational ClearCase configurations. You can use various combinations of these

functions and metadata:

v Attributes

v Labels

v Branches

v Triggers

v Config specs

v Locks

v Hyperlinks

For information about the way to define triggers for use on Linux, the UNIX

system, and the Windows computer, see “Sharing triggers among different types of

platform” on page 188.

Good documentation of changes is required

Each Rational ClearCase command that modifies a VOB creates one or more event

records. Many such commands (for example, checkin) prompt for a comment. The

event record includes the user name, date, comment, host, and description of what

was changed.

To prevent developers from subverting the system by providing empty comments,

you can create a preoperation trigger to monitor the checkin command.

Product Note: When a trigger is fired on a Windows system, a Rational ClearCase

function proceeds based on the success or failure of the trigger

operation, as determined by the trigger script exit code. A .bat file

returns the exit code of its last command. Preoperation triggers are

the only kind of trigger that causes the Rational ClearCase

operation to fail.

 Trigger definition on Linux and the UNIX system:

 cleartool mktrtype –element –all –preop checkin \

–c "must enter descriptive comment" \

–exec /public/scripts/comment_policy.sh CommentPolicy

 Trigger definition on the Windows system:

 cleartool mktrtype –element –all –preop checkin ^

–c "must enter descriptive comment" ^

–exec \\neon\scripts\comm_pol.bat CommentPolicy

 Trigger action script on Linux and the UNIX system:

 #!/bin/sh

comment_policy

#

© Copyright IBM Corp. 1992, 2006 179

ACCEPT=0

REJECT=1

WORDCOUNT=‘echo $CLEARCASE_COMMENT | wc -w‘

if [$WORDCOUNT -ge 10] ; then

 exit $ACCEPT

else

 exit $REJECT

fi

 Trigger action script on the Windows system:

 @echo off

rem comm_pol.bat

rem

rem Check for null comment

rem

if "%CLEARCASE_COMMENT%"=="" copy > NUL:

The trigger action script analyzes the user’s comment (passed in an environment

variable), and disallows unacceptable ones.

All source files require a progress indicator

You can monitor the progress of individual files or determine which or how many

files are in a particular state. You can use attributes to preserve this information

and triggers to collect it.

In this case, you can create a string-valued attribute type, Status, which accepts a

specified set of values.

 Attribute definition on Linux and the UNIX system:

 cleartool mkattype –c "standard file levels" \

–enum ’ "inactive","under_devt","QA_approved" ’ Status

Created attribute type "Status".

 Attribute Definition on the Windows system:

 cleartool mkattype –c "standard file levels" ^

–enum "\"inactive\",\"under_devt\",\"QA_approved\"" Status

Created attribute type "Status".

Developers apply the Status attribute to many different versions of an element. Its

value in early versions on a branch is likely to be inactive and under_devt; on

later versions, its value is QA_approved. The same value can be used for several

versions, or moved from an earlier version to a later version.

To enforce consistent application of this attribute to versions of all source files, you

can create a CheckStatus trigger whose action script prevents developers from

checking in versions that do not have a Status attribute.

 Trigger definition on Linux and the UNIX system:

 cleartool mktrtype –element –all –preop checkin \

–c "all versions must have Status attribute" \

–exec ’Perl /public/scripts/check_status.pl’ CheckStatus

 Trigger definition on the Windows system:

 cleartool mktrtype –element –all –preop checkin ^

–c "all versions must have Status attribute" ^

–exec "ccperl \\neon\scripts\check_status.pl" CheckStatus

180 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Trigger action script:

 $pname = $ENV{’CLEARCASE_PN’};

$val = "";

$val = ‘cleartool describe -short -aattr Status $pname‘;

if ($val eq "") {

exit (1);

} else {

 exit (0);

}

Label all versions used in key configurations

To identify which versions of which elements contributed to a particular baseline

or release, you can attach labels to these versions. For example, after Release 2 is

built and tested, you can create label type REL2, using the mklbtype command.

You can then attach REL2 as a version label to the appropriate source versions,

using the mklabel command.

Which are the appropriate versions? If Release 2 was built from the bottom up in a

particular view, you can use the following commands to label the versions selected

by that view:

cleartool mklbtype –c "Release 2.0 sources" REL2

cleartool mklabel –recurse REL2 top-level-directory

Alternatively, you can use the configuration records of the release derived objects

to control the labeling process:

clearmake vega

... sometime later, after QA approves the build:

cleartool mklabel –config vega@@17-Jun.18:05 REL2

Using configuration records to attach version labels ensures accurate and complete

labeling, even if developers have created new versions since the release build.

Development work can continue while quality assurance and release procedures

are performed.

To prevent version label REL2 from being used again, you must lock the label

type:

cleartool lock –nusers vobadm lbtype:REL2

The object is locked to all users except those specified with the –nusers option, in

this case, vobadm.

Isolate work on release bugs to a branch

You can fix bugs found in the released system on a named bug-fix branch, and

begin this work with the exact configuration of versions from that release.

This policy reflects the Rational ClearCase baseline-plus-changes model. First, a

label (for example, REL2) must be attached to the release configuration. Then, you

or any team member can create a view with the following config spec to

implement the policy:

element * CHECKEDOUT

element * .../rel2_bugfix/LATEST

element * REL2 -mbranch rel2_bugfix

Chapter 12. Implementing project development policies 181

If all fixes are made in one or more views with this configuration, the changes are

isolated on branches of type rel2_bugfix. The –mkbranch option causes such

branches to be created, as needed, when elements are checked out.

This config spec selects versions from rel2_bugfix branches, where branches of this

type exist; it creates such a branch whenever a REL2 version is checked out.

Avoid disrupting the work of other developers

To work productively, developers need to control when they see changes and

which changes they see. The appropriate mechanism for this purpose is a view.

Developers can modify an existing config spec or create a new one to specify

exactly which changes to see and which to exclude.

To implement this policy, you can also require developers to write and distribute

the config spec rule that filters out their checked-in changes. The following are

sample config specs:

v To select your own work, plus all the versions that went into the building of

Release 2:

element * CHECKEDOUT

element * REL2

v To select your own work, plus the latest versions as of Sunday evening:

element * CHECKEDOUT

element * /main/LATEST -time Sunday.18:00

v To select your own work, new versions created in the graphics directory, and the

versions that went into a previous build:

element * CHECKEDOUT

element graphics/* /main/LATEST

element * -config myprog@@12-Jul.00:30

v To select your own work, the versions either you (jones) or Mary has checked in

today, and the most recent quality-assurance versions:

element * CHECKEDOUT

element * ’/main/{ created_since(06:00) && (created_by(jones) ||

created_by(mary)) }’

element * /main/{QAed=="TRUE"}

v To use the config spec include facility to set up standard sets of configuration

rules for developers to add to their own config specs:

element * CHECKEDOUT

element msg.c /main/18

include /usr/cspecs/rules_for_rel2_maintenance

Deny access to project data when necessary

Occasionally, you may need to deny access to all or most project team members.

For example, you may want to prevent changes to public header files until further

notice. The lock command is designed to enforce such temporary policies:

v Lock all header files in a certain directory:

cleartool lock src/pub/*.h

v Lock the header files for all users except Mary and Fred:

cleartool lock –nusers mary,fred src/pub/*.h

v Lock all header files in the VOB:

cleartool lock eltype:c_header

v Lock an entire VOB:

cleartool lock vob:/vobs/myproj

182 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Notify team members of relevant changes

To help team members keep track of changes that affect their own work, you can

use postoperation triggers to send notifications of various events. For example,

when developers change the graphic user interface (GUI), an e-mail message to the

documentation group ensures that these changes are documented.

To enforce this policy, create a trigger type that sends mail, and then attach the

trigger to the relevant elements (see “To attach triggers to existing elements” on

page 184).

 Trigger definition on Linux and the UNIX system:

 cleartool mktrtype –nc -element –postop checkin \

 –exec /public/scripts/informwriters.sh InformWriters

Created trigger type "InformWriters".

 Trigger action script on Linux and the UNIX system:

 #!/bin/sh

#Init

tmp=/tmp/checkin_mail

construct mail message describing checkin

cat > $tmp <<EOF

Subject: Checkin $CLEARCASE_PNAME by $CLEARCASE_USER

$CLEARCASE_XPNAME

Checked in by $CLEARCASE_USER.

Comments:

$CLEARCASE_COMMENT

EOF

send the message

mail docgrp <$tmp

clean up

#rm -f $tmp

 Trigger definition on the Windows system:

 cleartool mktrtype –nc -element –postop checkin ^

–exec "ccperl \\neon\scripts\informwriters.pl" InformWriters

Created trigger type "InformWriters".

 Trigger action script on the Windows system:

 use Net::SMTP;

my $smtp = new Net::SMTP ’neon.purpledoc.com’;

$smtp->mail(’Rational ClearCase Admin’);

$smtp->to(’Rational ClearCase Admin’);

$smtp->to(’docgrp’);

$smtp->data();

$smtp->datasend("From: Rational ClearCase Admin\n");

$smtp->datasend("To: docgrp\n");

$smtp->datasend("Subject: checkin\n");

$smtp->datasend("\n");

create variables for path/user/comment

Chapter 12. Implementing project development policies 183

$ver = $ENV{’CLEARCASE_XPN’};

$user = $ENV{’CLEARCASE_USER’};

$comment = $ENV{’CLEARCASE_COMMENT’};

$var = "Version: $ver\nUser: $user\nComment: $comment\n";

$smtp->datasend($var);

$smtp->dataend();

$smtp->quit;

To attach triggers to existing elements

1. Place the trigger on the inheritance list of all existing directory elements within

the GUI source tree:

cleartool find /vobs/gui_src –type d \

–exec ’cleartool mktrigger –nattach InformWriters $CLEARCASE_PN’

2. Place the trigger on the attached list of all existing file elements within the GUI

source tree:

cleartool find /vobs/gui_src –type f \

–exec ’cleartool mktrigger InformWriters $CLEARCASE_PN’

All source files must meet project standards

To ensure that developers are following coding guidelines or other standards, you

can evaluate their source files. You can create preoperation triggers to run

user-defined programs, and cancel the commands that trigger them. For example,

you can disallow checkin of C-language files that do not satisfy quality metrics.

Suppose that you have defined an element type, c_source, for C language files

(*.c).

 Trigger definition on Linux and the UNIX system:

 cleartool mktrtype –element –all –eltype c_source \

–preop checkin –exec ’/public/scripts/apply_metrics.sh $CLEARCASE_PN’

ApplyMetrics

 Trigger definition on the Windows system:

 cleartool mktrtype –element –all –eltype c_source ^

–preop checkin –exec "\\neon\scripts\appl_met.bat %CLEARCASE_PN%"

ApplyMetrics

This trigger type ApplyMetrics applies to all elements; it fires when any element

of type c_source is checked in. (When a new c_source element is created, the

element is monitored.) If a developer attempts to check in a c_source file that fails

the apply_metrics.sh or appl_met.bat test, the checkin fails.

Tip: The apply_metrics.sh script and the appl_met.bat file can read the value of

CLEARCASE_PN from its environment. Having it accept a file name

argument provides flexibility because the script or batch file can be invoked

as a trigger action, and developers can also use it manually.

Associate changes with change orders

To keep track of work done in response to an engineering change order (ECO), you

can use attributes and triggers. For example, to associate a version with an ECO,

define ECO as an integer-valued attribute type:

cleartool mkattype –c "bug number associated with change" –vtype integer ECO

Created attribute type "ECO".

184 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Then, define an all-element trigger type, EcoTrigger, which fires whenever a new

version is created and runs a script to attach the ECO attribute.

 Trigger definition:

 cleartool mktrtype –element –all –postop checkin \

–c "associate change with bug number" \

–execunix ’Perl /public/scripts/eco.pl’ \

–execwin ’ccperl \\neon\scripts\eco.pl’ EcoTrigger

Created trigger type "EcoTrigger".

 Trigger action script:

 $pname = $ENV{’CLEARCASE_XPN’};

print "Enter the bug number associated with this checkin: ";

$bugnum = <STDIN>;

chomp ($bugnum);

$command = "cleartool mkattr ECO $bugnum $pname";

@returnvalue = ‘$command‘;

$rval = join "",@returnvalue;

print "$rval";

exit(0);

When a new version is created, the attribute is attached to the version. For

example:

cleartool checkin –c "fixes for 4.0" src.c

Enter the bug number associated with this checkin: 2347

Created attribute "ECO" on "/vobs/dev/src.c@@/main/2".

Checked in "src.c" version "/main/2".

cleartool describe src.c@@/main/2

version "src.c@@/main/2"

...

 Attributes:

 ECO = 2347

Associate project requirements with source files

You can implement requirements tracing with hyperlinks, which associate pairs of

VOB objects. The association should be at the version level rather than at the

branch or element level. Each version of a source code module must be associated

with a particular version of a related design document. For example, the project

manager creates a hyperlink type named DesignDoc, which is used to associate

source code with design documents.

cleartool mkhltype –c "associate code with design docs" \

DesignDoc@/vobs/dev DesignDoc@/vobs/design

Created hyperlink type "DesignDoc".

Created hyperlink type "DesignDoc".

The hyperlink inheritance feature enables the implementation of requirements

tracing:

v When the source module, hello.c, and the design document, hello_dsn.doc, are

updated, you create a new hyperlink connecting the two updated versions:

cleartool mkhlink -c "source doc" DesignDoc hello.c /vobs/design/hello_dsn.doc

Created hyperlink "DesignDoc@90@/vobs/dev".

v When either the source module or the design document incorporates a minor

update, no hyperlink-level change is required. The new version inherits the

hyperlink connection of its predecessor.

Chapter 12. Implementing project development policies 185

cleartool checkin -c "fix bug" hello.c

Checked in "hello.c" version "/main/2".

To list the inherited hyperlink, use the –ihlink option to the describe command.

 On Linux and the UNIX system:

 version that

inherits

hyperlink->

cleartool describe –ihlink DesignDoc hello.c@@/main/2

hello.c@@/main/2

 Inherited hyperlinks: DesignDoc@90@/vobs/dev

version to

which ->

hyperlink is

explicitly

attached

/vobs/dev/hello.c@@/main/1 ->

/vobs/doc/hello_dsn.doc@@/main/1

 On the Windows system:

 version that

inherits

hyperlink->

cleartool describe –ihlink DesignDoc hello.c@@\main\2

hello.c@@\main\2

 Inherited hyperlinks: DesignDoc@90@\dev

version to

which ->

hyperlink is

explicitly

attached

 \dev\hello.c@@\main\1 ->

 \doc\hello_dsn.doc@@\main\1

v When either the source module or the design document incorporates a

significant update, which renders the connection invalid, you create a null-ended

hyperlink to sever the connection.

cleartool mkhlink -c "sever connection to design doc" DesignDoc hello.c

Created hyperlink "DesignDoc@94@/vobs/dev".

Figure 52 illustrates the hyperlinks that connect the source file to the design

document.

0

1

2

3

4

hello.c

source module design document

0

1

2

3

hello_dsn.c

DesignDoc

DesignDoc

DesignDoc

Figure 52. Requirements tracing

186 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Prevent use of certain commands

To control which users can execute certain commands on Rational ClearCase

objects, you can create a pair of trigger types.

v One type controls the use of the command on element-related objects

v Another type controls the use of the command on type objects

Both trigger types use the –nuser flag to specify the users who are allowed to use

the command.

Tip: You cannot use triggers to prevent a command from being used on an object

that is not element related or a type object. For example, you cannot create a

trigger type to prevent operations on VOB objects or replica objects.

For a list of commands that can be triggered, see the events_ccase and mktrtype

reference pages.

For example, the following commands create two trigger types that prevent all

users except stephen, hugh, and emma from running the chmaster command on

element-related objects and type objects in the current VOB:

cleartool mktrtype –element –all –preop chmaster –nusers stephen,hugh,emma \

–execunix ’Perl –e "exit –1;"’ –execwin ’ccperl –e "exit (–1);"’ \

–c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype –type –preop chmaster –nusers stephen,hugh,emma \

–execunix ’Perl –e "exit –1;"’ –execwin ’ccperl –e "exit (–1);"’ \

–attype –all –brtype –all –eltype –all –lbtype –all –hltype –all \

–c "ACL for chmaster" type_chmaster_ACL

When user tony tries to run the chmaster command on a restricted object, the

command fails. For example:

cleartool chmaster –c "give mastership to london" london@/vobs/dev \

/vobs/dev/acc.c@@/main/lex_dev

cleartool: Warning: Trigger "elem_chmaster_ACL" has refused to let

chmaster proceed.

cleartool: Error: Unable to perform operation "change master" in

replica "lex" of VOB "/vobs/dev".

Certain branches are shared among Rational ClearCase MultiSite sites

Product Note: Rational ClearCase LT does not support Rational ClearCase

MultiSite.

If your organization uses Rational ClearCase MultiSite to support development at

different sites, you must tailor your branching strategy to the needs of these sites.

The standard MultiSite development model is to have a replica of the VOB at each

site. Each replica controls (masters) a site-specific branch type, and developers at

one site cannot work on branches mastered at another site. (For more information

on Rational ClearCase MultiSite mastership, see the IBM Rational ClearCase

Administrator’s Guide.)

However, sometimes you cannot, or may not want to, branch and merge an

element. For example, some file types cannot be merged, so development must

occur on a single branch. In this scenario, all developers must work on a single

branch (usually, the main branch). Rational ClearCase MultiSite allows only one

Chapter 12. Implementing project development policies 187

replica to master a branch at any given time. Therefore, if a developer at another

site needs to work on the element, mastership of the branch must be transferred to

that site.

Rational ClearCase MultiSite provides the following models for transferring

mastership of a branch:

v The push model, in which the administrator at the replica that masters the

branch uses the chmaster command to give mastership to another replica.

This model is not efficient in a branch-sharing situation, because it requires

communication with an administrator at a remote site. For more information

about this model, see the IBM Rational ClearCase Administrator’s Guide.

v The pull model, in which the developer who needs to work on the branch uses

the reqmaster command to request mastership of it.

Tip: The developer can also request mastership of branch types. For more

information, see the IBM Rational ClearCase Administrator’s Guide.

The pull model requires the Rational ClearCase MultiSite administrators to

enable requests for mastership in each replica and to authorize individual

developers to request mastership. If you decide to implement this model, you

must provide the following information to your Rational ClearCase MultiSite

administrator:

– Replicated VOBs that should be enabled to handle mastership requests

– Identities (domain names and user names) of developers who should be

authorized to request mastership

– Branch types and branches for which mastership requests should be denied

(for example, branch types that are site specific, or branches that must remain

under the control of a single site)
The IBM Rational ClearCase MultiSite Administrator’s Guide describes the process

of enabling the pull model and a scenario in which developers use the pull

model. The Developing Software online help describes the procedure developers

use to request mastership.

Sharing triggers among different types of platform

You can define a trigger that fires correctly depending on the type of platform on

which it runs (Linux, the UNIX system, and Windows computers). The following

techniques are available:

v “Using different paths or different scripts”

v “Using the same script” on page 189

With one technique, you use different paths or different scripts; with the other

technique, you use the same script for all platforms. For more information about

sharing triggers, see “Tips for sharing scripts” on page 132.

Using different paths or different scripts

To define a trigger that fires on Linux and the UNIX system; the Windows system;

or both types of platform, and that uses different paths to point to the trigger

scripts, use the mktrtype command with the –execunix and –execwin options.

These options behave the same as –exec when the trigger fires on the appropriate

platform (Linux and the UNIX system for –execunix or the Windows system for

–execwin). On the inappropriate type of platform, the related script does not run.

188 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

This technique allows a single trigger type to use different paths for the scripts or

to use completely different scripts on Linux or the UNIX system and the Windows

computer. For example:

cleartool mktrtype –element –all –nc –preop checkin

–execunix /public/scripts/precheckin.sh

–execwin \\neon\scripts\precheckin.bat

pre_ci_trig

Tip: The command line example is broken across lines to make the example easier

to read. You must enter the command on one line.

On Linux or the UNIX system, only the script precheckin.sh runs. On the Windows

system, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers

that specify only –execunix always fail on the Windows system. Likewise, triggers

that specify only –execwin fail on Linux and the UNIX system.

Using the same script

To use the same trigger script on Linux, the UNIX system, and the Windows

system, use a batch command interpreter that runs on all operating systems. For

this purpose, the ratlperl program is included in the Rational ClearCase

configuration. You can use this version of Perl on the Windows system, Linux, and

the UNIX system. The commands Perl on Linux and the UNIX system and ccperl

on the Windows system are wrapper programs that run ratlperl.

The following mktrtype command creates sample trigger type pre_ci_trig and

names precheckin.pl as the executable trigger script.

cleartool mktrtype –element –all –nc –preop checkin \

–execunix ’Perl /public/scripts/precheckin.pl’ \

–execwin ’ccperl \\neon\scripts\precheckin.pl’ \

pre_ci_trig

Note: In your scripts, you can run ratlperl directly. Ensure that you include the

following default paths to execute the scripts successfully:

v On Linux and the UNIX system: /opt/rational/common/

v On the Windows system: <install_location>\Rational\Common\

The value install_location is the root folder in which you installed Rational

ClearCase.

Chapter 12. Implementing project development policies 189

190 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 13. Setting up the base ClearCase integration with

Rational ClearQuest

This chapter provides an overview of the base ClearCase integration with Rational

ClearQuest and describes how to set up the integration. For information about

working in the integration, see Developing Software online help.

Overview of the base ClearCase integration with Rational ClearQuest

Rational ClearQuest is used to manage change requests, which report defects or

request modifications for a project or product. Each change request is stored as a

record in a Rational ClearQuest user database. Rational ClearCase is used to

manage versions of the elements that represent a project or product. Each version

embodies one or more changes to an element.

What the integration does

The base ClearCase integration with Rational ClearQuest associates one or more

Rational ClearQuest change requests with one or more Rational ClearCase

versions.

A single change request may be associated with multiple versions. The set of

versions that implement the requested change is called the change set for that

request.A single version may be associated with multiple change requests. These

change requests are called the request set for that version.

The base ClearCase integration with Rational ClearQuest has the following roles:

v As a Rational ClearCase project manager, you specify the conditions under which

developers are prompted to associate Rational ClearCase versions with Rational

ClearQuest change requests. You can specify VOBs, branches, and element types

for which developers can or must associate change requests.

v As a Rational ClearQuest administrator, you add Rational ClearCase definitions

to a Rational ClearQuest schema. These definitions enable change requests in

databases that use the schema to contain and display associated change sets.

v As a Rational ClearCase developer, you can:

– Associate a version with one or more change requests at the time you check

in or check out the version.

– View the change set for a request.

– Submit queries to identify the change requests that are associated with a

project over a period of time.

You can use the Rational ClearQuest Integration Query interface on a Windows

system to search for associations (see “About the Integration Query wizard” on

page 217).

How the integration works

To work successfully, the base ClearCase integration with Rational ClearQuest

must have:

v A VOB enabled for the integration

v A Rational ClearQuest schema upgraded with an integration package

© Copyright IBM Corp. 1992, 2006 191

v A configuration file with proper settings

About enabling a VOB and installing triggers

Using the Rational ClearQuest Integration Configuration tool that is supplied with

Rational ClearCase integrations, a project manager enables a VOB for the base

ClearCase integration. With the tool, you can do the following tasks:

v Select a VOB.

v Specify a policy for checkouts, checkins, and branch types.

v Select the version of triggers to use (either V2-Perl or V1-Visual Basic) and, for

V2-Perl triggers, select whether to use a central server configuration and trigger

files.

v Specify element type restrictions, branch type restrictions, or both.

v Specify the default Rational ClearQuest record type to be used in associations.

This enabling operation installs into the VOB triggers that fire before or after a

Rational ClearCase operation. An integration trigger calls the cqcc_launch script

which does the following tasks:

v Examines the environment to decide where the source for the trigger is stored.

v Decides the best version of Perl to use.

v Runs the config.pl file which loads the main trigger source code.

On certain Rational ClearCase operations (checkout, checkin, or cancel checkout),

the triggers fire and do the following tasks:

v Connect to the Rational ClearQuest user database

v Run a query for specific change requests in the Rational ClearQuest user

database

v Display the change request listing and prompt the developers for information

The developer associates change requests with the elements that are being accessed

by a Rational ClearCase client. When the Rational ClearCase operation completes,

the trigger stores associations (change set) in the Rational ClearQuest user database

and uses hyperlinks to store matching information (request set) in Rational

ClearCase storage. Thereafter, the result set of the Rational ClearQuest record that

has associations displays in the ClearCase tab of the client window the names of

the elements (the change set) that are associated with the defect (a change request).

For more information, see “Setting policies and installing triggers in a ClearCase

VOB” on page 197.

Query support

Queries in a Rational ClearQuest user database are run by the integration either

from a trigger firing or from an explicit developer selection in one of the

integration interfaces (either Browse in the GUI or Queryname in the command

line interface). You can make these queries available in the following ways:

v Provide queries in either the Personal Queries or Public Queries folder in a

Rational ClearQuest user database (Rational ClearQuest queries).

v Define queries in the integration configuration file (local queries).

By default, only local queries are available to developers. The Web interface

supports only local queries. For more information, see “Controlling query usage”

on page 210.

In making queries available to developers, keep in mind the following limitations:

192 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v Currently there is no support for queries that prompt the developer for runtime

parameters. That is, Rational ClearQuest queries that contain dynamic filters are

not supported, and, if dynamic filters are used in queries in the integration, they

act as if default values were selected without user interaction.

v Only single-line text fields in query results are supported in both Rational

ClearQuest and local queries. The integration provides no special handling for

multiple-line output within text fields.

v The first field in the query result set must be the Rational ClearQuest record ID.

For more information, see “SetResultSet” on page 206.

About locally stored information

Between invocations, the integration stores information in local files on the end

user host. The locally stored information is used to track operations that span

multiple trigger calls. This information is kept in files with names in the format

.cqcc_text. On Linux and the UNIX system, the files are stored in the user home

directory. On the Windows system, the files are stored in the user profile folder

under \Application Data\Rational\CQCC\.

Tip: The Rational ClearQuest login information is encrypted in a locally stored file

(.cqcc_params). To change to an alternate Rational ClearQuest login account,

remove this file. If the file is not found, a new login is forced when the trigger

is next called and the new information is stored in the file.

Product note: Because the integration stores information in one central location

dependent on the identification of the user, it cannot be safely run in

multiple shells or windows on the same machine at the same time

under the same user identification. And, on Linux and the UNIX

system, the integration cannot be run under the same user

identification on different machines because the information is

stored in the user home directory.

About trigger versions

In the Rational ClearQuest Integration Configuration tool, you specify the version

of the trigger that the integration should use on checkin and checkout operations.

You can select V2-Perl for use on Linux and the UNIX system and either V2-Perl

or V1-Visual Basic for use on the Windows system. Prior to Rational ClearCase

version 2002.05.00, the integration used a Visual Basic trigger (V1-Visual Basic)

through the CQIntSvr interface on the Windows system and a Perl trigger (V1-Perl)

through the Rational ClearQuest Web server interface on Linux and the UNIX

system. In Rational ClearCase version 2002.05.00, a Perl trigger (V2-Perl) was

added that runs on the Windows system and on Linux and the UNIX system. (This

trigger is also available in a patch to Rational ClearCase Release 4.2).

You can choose the following triggers:

v V2-Perl refers to the cross-platform Perl trigger. The same trigger code works on

Linux, the UNIX system, and the Windows system.

v V1-Visual Basic refers to the separate Visual Basic implementation on the

Windows system.

v V1-Perl refers to the earlier Perl trigger on Linux and the UNIX system that is

superseded by the V2-Perl trigger. The V1-Perl trigger is no longer supported.

The V2-Perl trigger provides both a text-based user interface for developers who

use the cleartool command-line interface and a graphic user interface (GUI) for

developers who use one of the Rational ClearCase GUIs, for example, ClearCase

Explorer (on the Windows system) or xclearcase (on Linux and the UNIX system).

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 193

If you are configuring the integration for the first time, use the V2-Perl trigger. If

you currently use the V1-Visual Basic trigger, evaluate the V2-Perl trigger and

consider migrating to it.

The V2-Perl trigger uses a configuration file called config.pl, which specifies your

local configuration parameters or centrally-defined configuration parameters.

About the integration package

To install the base ClearCase integration with Rational ClearQuest requires that the

Rational ClearQuest schema designer add the ClearCase 1.0 package to an existing

schema. The package accompanies the Rational ClearQuest product and supplies

new stateless records to target record types. The Rational ClearQuest administrator

then upgrades the Rational ClearQuest user database with the revised schema.

Because you cannot remove a package after you add a package to a schema, the

Rational ClearQuest documentation suggests that you use a test environment

before you modify your production environment. For more information about

installation, see “Setting up the Rational ClearQuest user database for base

ClearCase” on page 196.

About the configuration file

In the integration configuration file config.pl, the project manager sets the options

and policies that determine the operational details. The config.pl file provides the

following information and control:

Rational ClearQuest connection information

Determines whether you connect to the user database with the Rational

ClearQuest client or the Rational ClearQuest Web interface, specifies to

what targets you connect (database set, user database, or record types), and

controls what query information is presented to the developer (see

“Connecting Rational ClearCase clients and a Rational ClearQuest user

database” on page 203)

Rational ClearCase policies

Determines whether single or multiple associations are allowed, which

queries are allowed, and what restrictions are placed on queries (see

“Making policy choices” on page 209)

Performance

Controls use of options to improve processing efficiency, including

auto-batch, auto-association, and batch-series; obtaining associations from

Rational ClearCase comments; and commit after the checkin (see

“Enhancing performance” on page 211)

Debugging

Provides logging and timing information (see “Debugging and analyzing

operations” on page 215)

Policy regarding customization and support

Project managers can make changes in the integration by editing the config.pl file.

Integration source code changes that are made outside the config.pl file are

possible, but are not supported.

The following is supported: the integration as provided and local configuration

changes that you make by using the configuration parameters in the configuration

file (config.pl).

Source code changes to the integration are not supported although source code is

provided as Perl scripts. If you request additional information from IBM Customer

194 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Support, you can receive internal documentation that describes making changes

through creating and using subclasses in the Perl trigger. To enable local sites to

make judicious changes, the requested internal documentation describes the use of

subclasses to separate changes that you make and the main body of code that is

supplied with the product. For information on using the subclasses, see

“Customizing the integration” on page 217. But local source code changes cannot

be and are not supported by IBM Customer Support.

Checklist of configuration steps

Refer to Table 5 for a checklist of steps to configure the base ClearCase integration

with Rational ClearQuest.

 Table 5. Configuration checklist

Location Step

On the ClearCase system Create a ClearCase VOB and mount it.

Create views.

On the ClearQuest system Set up your schema repository, user database, and the

ClearQuest client.

In the user database, open Designer, open the Package Wizard,

select ClearCase 1.0 package, and apply it to the schema.

Enable the ClearCase 1.0 package for record types in the

schema.

Check in the schema and upgrade the user database.

On the ClearCase system Start configuring the integration (see “To start the Rational

ClearQuest Integration Configuration tool” on page 199).

Select the appropriate ClearCase VOB. (If the VOB is on Linux

or the UNIX system, set up the environment for

inter-operation.)

Select desired policy settings (Checkin, checkout, branch-type

restrictions, and appropriate element-type restrictions).

Enter record type. (This allows for only a single default

preference, but multiple types are supported. See “Defining the

Rational ClearQuest user database and database set” on page

204.)

Select trigger type (V2-Perl in this case) for Windows and

Linux and the UNIX system.

Specify the config.pl path and set trigger scripts option to use

a shared location (see “Using a shared configuration file and

triggers” on page 198).

Modify config.pl with the appropriate configuration

parameters (see “Summary of configuration parameters” on

page 201).

Use cqcc_launch -test to see whether the basic

communications is working (see “Testing the integration” on

page 216).

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 195

Planning for the base ClearCase integration with Rational ClearQuest

After you successfully install both Rational ClearCase and Rational ClearQuest

products, you should establish a test environment in which to evaluate what works

well in your organization. Establishing a test environment requires someone who

has Rational ClearCase administrator rights (for example, to create and own a

VOB) and someone who has Rational ClearQuest administrator rights (for

example, to create a user database and install packages and upgrade schemas). The

evaluation can involve the following activities:

v Establish in a test environment a VOB that is like your production VOB and

install the triggers to become familiar with the way the integration works.

Ensure that the VOB is not UCM (that is, it will not contain UCM components).

v Create a production user database for testing purposes.

v Use the procedures defined in this chapter and the tasks defined in the online

help to set up the Rational ClearQuest user database that you created for testing

purposes, to configure the base ClearCase integration with Rational ClearQuest,

and to connect the environments.

v Try different policies, performance options, and configuration options to see

what works best.

v Use the test VOB to confirm that the configuration and options work.

An important deployment decision is whether to use a local or a central

configuration. By default, the configuration file and trigger source files reside on

each client machine. Because this arrangement is difficult to maintain, it is better to

define a central location on which you maintain one copy of the configuration file

and trigger source files. In the central arrangement, any changes are made in only

one location and the one location is more easily made secure.

When you settle on an environment that works, communicate to developers how

to work with the integration and publicize the policies that are to be in effect in

the production VOBs. Then, install the triggers in a production VOB, apply the

same configuration information that you established in the tested configuration,

and perform the same basic tests again.

Setting up the Rational ClearQuest user database for base ClearCase

Before developers can associate Rational ClearCase versions with Rational

ClearQuest change requests, the Rational ClearQuest administrator needs to

configure Rational ClearQuest in the following manner:

v Add Rational ClearCase definitions to a Rational ClearQuest schema.

Use the Rational ClearQuest Designer’s Package Wizard to add the definitions

(see “Adding Rational ClearCase definitions to a Rational ClearQuest schema”

on page 197). You associate the Rational ClearCase definitions with one or more

record types and their related forms. Each form then contains a ClearCase tab

that displays the change set for a change request.

v Use the Rational ClearQuest Designer to upgrade the database with the new

version of the schema. See the Upgrading an existing database topic in the Rational

ClearQuest Designer Help. If you move the integration to a different database,

repeat this step for that database.

196 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Adding Rational ClearCase definitions to a Rational

ClearQuest schema

A Rational ClearQuest schema contains the attributes associated with a set of

Rational ClearQuest user databases, including definitions of record types, fields,

and forms. The Rational ClearQuest administrator must add some Rational

ClearCase definitions to the schema that the database uses. To do so, the Package

Wizard within Rational ClearQuest Designer is used.

Note: If you are using a version of Rational ClearQuest earlier than version 2.0,

use the Rational ClearQuest Integration Configuration tool to add Rational

ClearCase definitions to a Rational ClearQuest schema.

To add Rational ClearCase definitions to and upgrade a Rational

ClearQuest schema

1. Click Start > Programs > IBM Rational > IBM Rational ClearQuest >

ClearQuest Designer.

2. In Rational ClearQuest Designer, click Package > Package Wizard.

3. In the Package Wizard, look for the Rational ClearCase 1.0 package. If this

package is not listed, click More Packages, and add it to the list from the

Install Packages window.

4. Select ClearCase 1.0, and click Next.

5. Select the schema for the Rational ClearQuest user database that you want to

use in the integration. Click Next.

6. Do one of the following actions:

v If you use the V2-Perl trigger, you can specify multiple record types. Click

Finish.

v If you use the V1-Visual Basic trigger, select the record type of Rational

ClearQuest records to be associated with Rational ClearCase versions. Use

this record type when you specify the ClearQuest Record Type field in the

Rational ClearQuest Integration Configuration tool (see “To start the Rational

ClearQuest Integration Configuration tool” on page 199).
7. Click File > Check In to save the new version of the schema.

8. Click Database > Upgrade Database to upgrade the Rational ClearQuest user

database with the new version of the schema.

Setting policies and installing triggers in a ClearCase VOB

Before developers can associate Rational ClearCase versions with Rational

ClearQuest change requests, you need to configure Rational ClearCase as follows:

v Using the Rational ClearQuest Integration Configuration tool, for each VOB, set

policies that determine the conditions under which developers are prompted to

associate versions with change requests. You can specify that developers are

prompted on checking out a version, checking in a version, or both. You can also

specify that prompting occurs only for some branch types or element types.

Associations of checked-in versions with change requests can be either optional

or required.

v Using the Rational ClearQuest Integration Configuration tool, select the trigger

type that is to be used. If you use the V2-Perl trigger, you need to modify a

configuration file to set database connectivity information and additional policy

parameters (see “Editing the configuration file” on page 200).

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 197

The base ClearCase integration with Rational ClearQuest uses Rational ClearCase

element triggers on cleartool checkin (preoperation and postoperation), checkout

(postoperation), and uncheckout (preoperation) commands to allow developers to

associate versions with Rational ClearQuest change requests.

To start the Rational ClearQuest Integration Configuration tool, see “To start the

Rational ClearQuest Integration Configuration tool” on page 199.

Using a shared configuration file and triggers

In the Rational ClearQuest Integration Configuration tool, if you set V2-Perl, you

have the following options:

v Use a local configuration file and local trigger scripts (default).

v Use a shared, centrally located configuration file and local copies of trigger

scripts.

v Use a shared, centrally located configuration file and shared trigger scripts.

By default, the Path field is filled in with CQCC/config.pl, the path to the

configuration file. In this path, the value CQCC resolves to the following value on

each local client:

ccase–home–dir/lib/CQCC

By default, the cqcc_launch script is installed in the following location on each

local client:

ccase–home–dir/bin

On the Linux and UNIX system, the script is cqcc_launch; on the Windows system,

the script is cqcc_launch.bat.

In this configuration, each time the integration starts or a trigger fires on a client

machine, the local instances of the configuration file, the cqcc_launch script, and

trigger scripts are run. This is the default configuration.

To define a central location for accessing a shared, centrally located configuration

file, in the Rational ClearQuest Integration Configuration tool, provide a sitewide

path to the configuration file. To provide the path, change the Path field to a UNC

path to a Windows system or to a full path to the Linux or the UNIX system that

contains the configuration file and the cqcc_launch script. The integration uses that

one central configuration file and the cqcc_launch script for all users of VOBs that

are enabled for Rational ClearQuest. All users will run the shared, centrally located

copy of the config.pl file. This configuration uses local copies of trigger scripts.

If you set Use trigger scripts in Path directory, you can use shared, centrally

located trigger scripts with the centrally located configuration file. This setting

allows you to centralize the trigger source code in one location. Triggers installed

with this option look for the configuration file, cqcc_launch script, and trigger

source code in the same directory in which the configuration file is located. This is

the best configuration because it is easiest to secure and maintain.

If you use a centrally located configuration file or trigger scripts, perform some

housekeeping procedures to set up the central location. This set-up involves

copying the requisite files from the installed location on a Rational ClearCase

system to the central location. For more information, see the online Help in the

Rational ClearQuest Integration Configuration tool.

198 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

In support of the configuration, the cqcc_launch script provides as a convenience

the following command-line option:

cqcc_launch -vob

This command searches the current VOB for its checkout trigger to determine the

correct paths and configuration file to use in launching the script.

Installing triggers in a VOB on Linux and the UNIX system

If the VOB resides on Linux or the UNIX system, install the triggers from a

Windows system that uses the same registry server as the system on which the

VOB resides. The VOB tag must be imported from the region in which the Linux

and the UNIX systems run to the region in which the Windows system runs. Then,

you can use the Rational ClearQuest Integration Configuration tool.

To start the Rational ClearQuest Integration Configuration tool

1. Log into the system as the VOB owner.

2. Use one of the following methods:

v On a system that runs Rational ClearCase, click Start > Programs > IBM

Rational > IBM Rational ClearCase > Administration > Integrations >

ClearQuest Integration Configuration.

v On a system that runs Rational ClearCase LT server, click Start >

Programs > IBM Rational > IBM Rational ClearCase LT > ClearQuest

Integration Configuration.

v Enter cqconfig at the command prompt.
3. In Select a VOB, select a VOB tag in the list.

4. In the Windows Trigger Selection or UNIX Trigger Selection fields of the

Rational ClearQuest Integration Configuration window, specify which trigger

you want to use by clicking one of the following options:

v V2-Perl which refers to the cross-platform Perl trigger.

v V1-Visual Basic which refers to the Visual Basic triggers (the Windows

system only).

For more information about triggers, see “About trigger versions” on page 193.

For information about completing the other fields in the tool, click Help within the

tool.

To specify multiple record types

1. In the Rational ClearQuest Integration Configuration tool, specify the DEFAULT

record type. See “To start the Rational ClearQuest Integration Configuration

tool.”

2. When you edit the config.pl file, specify multiple record types that the user can

select when the integration runs. See “Defining the Rational ClearQuest user

database and database set” on page 204.

To list triggers installed in a VOB

Enter the lstype command to see the types of triggers in a specific VOB. For

example:

On Linux and the UNIX system:

cleartool lstype -kind trtype -invob /vobs/my_vob

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 199

On the Windows system:

cleartool lstype -kind trtype -invob \my_vob

Information about the triggers defined in the specified VOB are displayed. For

example:

cleartool lstype -kind trtype -invob \my_vob

08-Jun.08:07 username trigger type "cq_ci_trigger"

 "ClearQuest Integration"

08-Jun.08:07 username trigger type "cq_co_trigger"

 "ClearQuest Integration"

08-Jun.08:07 username trigger type "cq_postci_trigger"

 "ClearQuest Integration"

08-Jun.08:07 username trigger type "cq_unco_trigger"

 "ClearQuest Integration"

Use the describe command to see information about a specific base ClearCase

integration with Rational ClearQuest trigger. For example:

On Linux and the UNIX system:

cleartool describe trtype:cq_co_trigger@vob:/vobs/my_vob

On the Windows system:

cleartool describe trtype:cq_co_trigger@vob:\my_vob

Information about the postoperation checkout trigger is displayed.

Quick start for evaluations

The default configuration file is set to use the SAMPL user database that is

provided for evaluations in the Rational ClearQuest configuration. You can test the

integration with the SAMPL Rational ClearQuest user database. If Rational

ClearQuest is installed on the client machine, the base ClearCase integration with

Rational ClearQuest uses the Rational ClearQuest Perl API to communicate with

the Rational ClearQuest user database.

If Rational ClearQuest is not installed on the client machine, the integration uses

the Rational ClearQuest Web Interface to communicate with the Rational

ClearQuest user database. To use the Web interface, set server name in the

configuration file or use the optional environment variable (see “Establishing the

Rational ClearQuest Web interface” on page 203).

Editing the configuration file

The configuration file contains parameters that define local policy choices and how

to access Rational ClearQuest user databases. Before you can edit the configuration

file, change its permissions to make it modifiable.

Overview of the configuration file

The configuration file is set to access the Rational ClearQuest SAMPL user

database and use the defect record type. To use the integration with a different

Rational ClearQuest user database or record type, you need to change

configuration parameters (see “Summary of configuration parameters” on page

201). The configuration file contains comments that describes the values that are

allowed of configuration parameters. Information about the integration and

configuration parameters that could not be put in the product documentation is

made available in the README file in the same folder as the configuration file.

200 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Locating the configuration file

When Rational ClearCase is installed, the following file is placed on the system:

ccase–home–dir\lib\CQCC\configTemplate.pl

If there is no existing file with the same name, the following file is also placed on

the system:

ccase–home–dir\lib\CQCC\config.pl

If the local configuration file config.pl exists, the installation tries to avoid

replacing that file because it contains your changes. The installation action depends

on the platform type.

v On Linux and the UNIX system, no new version of the config.pl file is installed.

The current version is preserved.

To take advantage of the latest changes, copy the new information from the

configTemplate.pl file to the config.pl file.

v On the Windows system, if the installed version is not modified (based on

comparing the date stamp on the file and the original installation date), the

latest version of the config.pl file is installed.

If the installed version is modified, no new version of the file is installed. The

current version is preserved.

To see the latest changes in configuration information, compare the config.pl and

the configTemplate.pl files. If you make changes to your configuration, edit the

configTemplate.pl file and save the changes to both configTemplate.pl and

config.pl. By locating the configuration file in a central place, you simplify the task

of implementing the latest changes. For more information, see “Using a shared

configuration file and triggers” on page 198.

If you uninstall Rational ClearCase, both configTemplate.pl and config.pl are

removed from the system. However, on Linux and the UNIX system, the config.pl

file is first copied to the standard file preservation area and then removed from its

original location.

Configuration file use and format

The config.pl file is a Perl script that contains comments and commands for local

site configuration information. You change one or more configuration parameters

in one Perl function called ConfigureTrigger. Remaining functions in the script call

that function to implement the change. The script runs to establish the

configuration and to call the main trigger routine. Each configuration parameter

has the following general format:

Name: [ENV] (Default: value)

values

Sample to enable

The [ENV] notation indicates whether the related configuration parameter can be

set as an environment variable in the developer’s context. In the Default: entry,

value indicates what the integration uses if you do not edit the sample line. The

line with values shows all possible selections that you can use in the Sample to

enable line. Edit the sample line with your change and remove the pound (#)

character from the beginning of the line to enable your change.

Summary of configuration parameters

Configuration parameters provide the following functional capabilities:

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 201

v “Connecting Rational ClearCase clients and a Rational ClearQuest user

database” on page 203

v “Making policy choices” on page 209

v “Enhancing performance” on page 211

v “Debugging and analyzing operations” on page 215

Table 6 summarizes the configuration parameters that you can set in the config.pl

file. Some of the configuration parameters have related environment variables of

the same name that you or your developers can set in their local context. These

parameters are noted by Yes in the Locally settable column of Table 6. All

parameters are described more fully in the subsequent sections about functional

capabilities.

 Table 6. Configuration parameters summary

Configuration parameter Description

Locally

settable

CQCC_ASSOC_BATCH_CONFIRM Displays a window that confirms that

the batch completed successfully.

Yes

CQCC_ASSOC_BATCH_ENABLE Allows delay in processing multiple

Rational ClearQuest association

transactions until end of single Rational

ClearCase operation or user-defined

batch

Yes

CQCC_ASSOC_BATCH_SERIES Specifies that a user-defined series is

active and normal Rational ClearCase

series-end processing should be

suppressed

Yes

CQCC_AUTO_ASSOCIATE Sets one or more change requests for

automatic association on checkout and

checkin without user interaction

Yes

CQCC_AUTO_ASSOCIATE_ENABLE Specifies whether developers can use

CQCC_AUTO_ASSOCIATE

No

CQCC_COMMENT_PATTERN Sets pattern by which developers can

make associations in a checkout or

checkin comment

No

CQCC_CQWEB_ONLY Forces use of Rational ClearQuest Web

interface

No

CQCC_CQWEB_VERSION Specify either 2.0 (Java™) or "1.0" (ASP

with IIS) as Rational ClearQuest Web

server protocol

Yes

CQCC_DATABASE_ENTITY_LIST Defines logical name of database and

related record types (entities) that

support associations.

No

CQCC_DATABASE_SET Database set name (connection) for one

of multiple schema repositories; used

with CQCC_DATABASE_ENTITY_LIST

Yes

CQCC_DEBUG Controls level of output generated for

problem diagnosis; 0 (none), 1 (basic), 2

(verbose)

Yes

CQCC_GUI_ENABLE Allows use of Perl/TK graphic user

interface

Yes

CQCC_LOG_OUTPUT Records to a log file messages for

problem diagnosis

Yes

202 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Table 6. Configuration parameters summary (continued)

Configuration parameter Description

Locally

settable

CQCC_MULTIPLE_ASSOCS Allows or prevents multiple defects to

be associated with change

No

CQCC_MULTISITE Enables Rational ClearCase MultiSite

support

No

CQCC_POSTCHECKIN_COMMIT Allows commitment of associations in

Rational ClearQuest user database to be

delayed until checkin completes in

Rational ClearCase VOB

No

CQCC_QUERY_ENABLE Allows developer-selected queries for

making associations

No

CQCC_QUERY_FILTER Controls which queries are presented to

developers for associations

No

CQCC_REPLICA_NAME For Rational ClearQuest Web client to

specify user database replica name

Yes

CQCC_RESTRICTIONS_TIMEOUT Specifies number of seconds that a

restrictions check can be reused during

batch processing

Yes

CQCC_SERVER Name of Rational ClearQuest Web

server

Yes

CQCC_SERVERROOT Name of folder in which Rational

ClearQuest Web server is located

Yes

CQCC_SERVER_SSL Enables secure communications for the

Rational ClearQuest Web connection.

Yes

CQCC_TIMER Allows recording of internal timing data Yes

CQCC_WEB_DATABASE_SET CQCC_DATABASE_SET for Web server Yes

Connecting Rational ClearCase clients and a Rational ClearQuest user

database

You have multiple options for connectivity.

Establishing the Rational ClearQuest Web interface

If the Rational ClearQuest client is installed on a developer system, it is used by

default. If the Rational ClearQuest client is not installed on a developer system, the

Rational ClearQuest Web Interface is the default interface. To enable a client to use

the Rational ClearQuest Web Interface, set the following configuration parameters

in the configuration file or the environment variables from the command-line

prompt:

Configuration parameter or environment variable

CQCC_CQWEB_VERSION

Because two versions are supported, configure the correct protocol. 2.0

(Rational ClearQuest Web Java protocol) is the default. 1.0 (Rational

ClearQuest Web ASP) is for earlier Rational ClearQuest Web servers.

CQCC_SERVER

Specifies the name of the host at which the Rational ClearQuest Web server

resides and uses port 80. To specify a different port, add to the host name

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 203

a colon (:) and the number of the port; for example, myhost:81 specifies

that port number 81 be used instead of port 80.

CQCC_SERVERROOT

Specifies the root directory in which the Rational ClearQuest Web Interface

files are installed; usually cqweb.

CQCC_SERVER_SSL

Specify TRUE to enable secure communications for the Rational ClearQuest

Web connection. The URL is set to use https:. Specify FALSE (the default)

to use http: as the protocol.

 If you enable secure communications, more time is used to establish a new

connection when a trigger fires and a connection to a Rational ClearQuest

user database is required relative to establishing an ordinary connection.

Configuration parameter only

CQCC_CQWEB_ONLY

Set this to force use of the Rational ClearQuest Web Interface even if the

Rational ClearQuest client is installed.

Defining the Rational ClearQuest user database and database

set

By default, the base ClearCase integration with Rational ClearQuest uses the

SAMPL user database with a defect record type. Use the configuration parameter

CQCC_DATABASE_ENTITY_LIST in the configuration file to specify the logical

name of the Rational ClearQuest user database and record types in your

production environment that support associations. You can specify multiple record

types per database. For each Rational ClearQuest user database, you must provide,

in a list format, record types (entities) that accept Rational ClearCase associations.

This list is used to provide choices to the developers when they make associations.

Use the following format:

dbname1: entity1,entity2; dbname2: entity3,entity4

For an entity, specify the record type. For example:

&SetConfigParm("CQCC_DATABASE_ENTITY_LIST","SAMPL: defect");

The database name is case sensitive. For each record type that you specify, describe

the field names in the schema definition (see “Establishing the schemas” on page

205).

Database sets (connections) allow developers to select from multiple schema

repositories when they start a ClearQuest client or the base ClearCase integration

with Rational ClearQuest. Only one database set is supported. In the integration, if

your site uses multiple database sets, define CQCC_DATABASE_SET to specify the

database set that is used for the integration and for the Rational ClearQuest native

client interface. In CQCC_DATABASE_SET, supply the database connection name

that you created in the Rational ClearQuest Maintenance tool. For example:

&SetConfigParm("CQCC_DATABASE_SET", "cqcc_db");

If you also use the Rational ClearQuest Web interface, supply this name in

CQCC_WEB_DATABASE_SET. For example:

&SetConfigParm("CQCC_WEB_DATABASE_SET", "cqcc_db");

If you set both configuration parameters, the names can differ.

204 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Establishing the schemas

Schemas provide more information about Rational ClearQuest record types

(entities) to identify field names and query definitions. If the schemas share basic

information in common, the schemas can describe one or more record types but do

not distinguish between different user databases.

Overview of DefineCQSchema

In the configuration file, edit the DefineCQSchema() definition to provide the

required and optional field names. Map your database field names to conventions

that are used in SAMPL database. This mapping allows query definitions to be

more generic, but also tells the integration what field names to use for its own

operations, for example, internal queries that it has to do. Certain field names are

required, for example, ID, OWNER, STATE, and HEADLINE.

Tip: The ID field must be first in the results set. The field is used to select records

for later operations.

Add other field names for your convenience, but these other mappable names are

not required by the integration. Field names can be used directly in queries that

you define if at least the required fields are made known to the integration.

The integration uses a CQSchema object to relate the field names that are defined

to the field names that you use in your local record types. A CQSchema is loosely

related to a Rational ClearQuest schema, but it really just describes record type

fields and queries that are needed by the integration. It accomplishes the following

tasks:

v Defines a new CQSchema and provides a set of similar record types (entities)

and properties (DefineCQSchema)

v Relates the field names of the defect record type to those used by the record

types that you specify (ChangeFieldMap)

v Defines one or more queries (SetQuery) that are used by the trigger to provide

the QUERY option that the developers see and specifies the final

RESTRICTIONS check that is made before associations are made

v Defines the query output format (SetResultSet)

DefineCQSchema

$s = DefineCQSchema(NAME=>name, ENTITY_LIST=>entityList,

 RESTRICTIONS=>queryName);

NAME

Used only to provide a unique reference. Change the NAME for the new

schema.

ENTITY_LIST

Provides one or more record types. For example, "defect,feature,patch".

RESTRICTIONS

Optional; refers to a query within the schema that defines conditions that

new associations must meet. For example, the change request must be in a

specific state. If you do not provide any restrictions, any existing change

requests can be used.

 For example:

$s = &DefineCQSchema(NAME=>"MainSchema",

 ENTITY_LIST => "defect",

 RESTRICTIONS => "STANDARD");

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 205

ChangeFieldMap

 $s->ChangeFieldMap(name=>value, ...)

ChangeFieldMap() is a hash list that maps standard field names (for example,

Owner) to a local name that you specify in value. The name is usually the name of

a field in the SAMPL defect record type, but you can use any name that needs

mapping in a query. The field map names are used in query or result set lists as

variables. For example:

$s->ChangeFieldMap(OWNER => "Owner",

 STATE => "State",

 ID => "id", #Note: ID shouldn’t need to change

 HEADLINE => "Headline",

 PRIORITY => "Priority",

 SEVERITY => "Severity",

 RATL_MASTERSHIP => "ratl_mastership",

 # Other mappable names

 QUERY_STATES => "Submitted,Assigned,Opened",

 MODIFY => "modify"

);

The value for <OWNER> is translated to the local value that you provide in the

OWNER=>"Owner" pair.

Tip: If you use multiple record types, the field names in the mapping must be

present in all record types.

SetQuery

$s->SetQuery(queryName, clause1, clause2, ...);

SetQuery() provides a named set of filter clauses for the query. It can directly use

your local field names or rely on the field map to translate them when left angle

brackets (<) and right angle brackets (>) are used. The value queryName is local to

the current schema. STANDARD is used for the QUERY option, but you can define

a second query to present an alternate restrictions query. The value clauseN is a

string defining a condition in the format field operator value. For example:

$s->SetQuery("STANDARD",

 "<OWNER> eq <*USER*>",

 "<STATE> in <QUERY_STATES>");

Use only commas to separate multiple values.

Tip: SetQuery() is effectively an AND group of clauses. OR or NOT connectives

are not supported.

SetResultSet

$s->SetResultSet(queryName,ID,fieldList,formatString);

SetResultSet() identifies the fields that the query should return.

The value fieldList is a comma-separated list of field names. The first field must be

ID (generated by Rational ClearQuest) because the integration must be able to

identify and work with the selected records. A customer-generated ID field does

not meet this requirement.

The value formatString is a standard printf format string. For example:

206 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

$s->SetResultSet("STANDARD",

 "<ID>,<STATE>,<PRIORITY>,<SEVERITY>,<HEADLINE>",

 "%s %-9.9s %1.1s %1.1s %-45.45s");

Tip: If you use both local and Rational ClearQuest queries (see “Controlling query

usage” on page 210), the SetResultSet definitions must contain the exact fields

in the exact order as your queries.

Sharing a CQSchema

A CQSchema can be shared by different record types if the record types share the

small subset of field names that the integration uses. If you have record types that

are too different to share one schema, you can define additional CQSchema objects.

To define an additional CQSchema, copy the following commands:

DefineCQSchema, ChangeFieldMap, SetQuery, and SetResultSet and modify them

for additional definitions. Supply the mapping for each schema.

Establishing Rational ClearCase MultiSite support

To use Rational ClearCase MultiSite support, set the CQCC_MULTISITE

configuration parameter in the configuration file to "TRUE". To use the Rational

ClearQuest Web client with Rational ClearCase MultiSite support, set

CQCC_REPLICA_NAME to the name of the VOB replica. This setting is needed

because the Rational ClearQuest Web client cannot determine the replica name.

About code page conversion

To communicate with Rational ClearCase, Rational ClearQuest, and the user

interface, the integration uses character strings to represent query results and

association information. When clients and servers use only ASCII data, the

communication is simple. But if characters require more than single-byte ASCII

representations (for example, to provide accented or multiple-byte characters for

other languages), the integration must process strings that are encoded in different

code pages. For example, strings that are sent between the client and the server

must be converted from the ″local″ code page used on the client to a more

universal multiple-byte representation (for example, UTF-8 encoding form) on the

Rational ClearQuest Web server.

The integration code page conversion process

The integration uses the following conversion process:

v Characters are converted between local code page and UTF-8 encoding form,

where appropriate. Because performance overhead is negligible, disabling

conversion for performance reasons is not encouraged. Code page conversion is

only supported in Rational ClearCase 7.0 and later releases. Thus, conversion is

ignored by clients running earlier versions of Rational ClearCase. If code page

conversion errors occur, they are reported to the user as type error or type fatal,

depending on the context as shown in the following example:

Conversion error for CQWebJava field ’Resultset.Rows’

Codepage conversion error: No valid character in output character set.

The string is ’French: Les na?fs ?githales h?tifs pondant ? No?l o? il

g?le sont

 s?rs d’?tre d??us et de voir leurs dr?les d’?ufs ab?m?s’

The following characters are invalid:

U+c3af at 14

U+c3a6 at 18

U+c3a2 at 29

U+c3a0 at 43

U+c3ab at 47

U+c3b9 at 51

U+c3a8 at 57

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 207

U+c3bb at 67

... (error message truncated)

Caller: \\serverA\central\CQCC\../CQCC/CQWebJava.pm Line: 896

The error message indicates the context in which the string is being used and

the string or strings involved; and uses question mark (?) characters to indicate

inconvertible characters. Additional information is provided on each individual

character that can not be converted.

v If code page conversion is not enabled or is not yet supported on the client, the

integration performs ASCII checking to filter non-ASCII data in strings. Strings

that contain non-ASCII data are treated as code page conversion errors. Similar

information is reported to identify the context and string contents. Performance

overhead for ASCII checking is negligible. With ASCII checking enabled, the

integration prevents transmission of incorrectly encoded data between client and

server and minimizes potential data corruption and misrepresentation.

v The integration can produce large error messages if there are either code page

conversion or ASCII check errors. There is a maximum number of lines that are

displayed in a conversion error message, after which additional data is

truncated. The number of lines is set to 50 by default, but, if your environment

requires, the limit can be adjusted to provide less or more information.

The contents of the configuration file

The config.pl file can contain non-ASCII values (for example, non-ASCII database

names) either as local code page when all client machines are using the same code

page or UTF-8 values when more than one local code page is in use. If you use

UTF-8 values in the config.pl file, perform the following actions:

1. Use a UTF-8 capable editor (for example, Windows Notepad) to open the

config.pl file.

2. Include the following line at the top of the config.pl file, before the use

CQCC::TriggerCQCC; statement:

use utf8;

This line tells Perl that the file contains UTF-8 strings.

3. Use the Save As command and, in Encoding, select UTF-8 to save the config.pl

file in UTF-8 format.

This preserves the strings that you entered in the config.pl file as UTF-8 data.

Configuration parameters for code page conversion

The integration code page conversion can be disabled or modified through

configuration parameters. Because most sites should not need to modify the

parameters, they are not documented. For more detailed information, contact your

customer support representative.

Testing the configured connections

If you have the connectivity information set up in the configuration file, you can

test the connectivity. From a command line in a view context, change directory to a

folder in your VOB and type a test command. For example:

cqcc_launch -vob -test

This command connects to your Rational ClearQuest user database, makes some

test associations from Rational ClearCase elements to a Rational ClearQuest record,

and then removes the test associations. For information about errors, see

“Troubleshooting the configured connections” on page 209.

208 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Troubleshooting the configured connections

If you have trouble connecting to a Rational ClearQuest user database through the

integration in the connectivity test (see “Testing the configured connections” on

page 208), the debug output produced in the connectivity test provides some help.

The following are common reasons for connection problems:

v Wrong Rational ClearQuest database set

The database set is not required in the CQCC_DATABASE_SET configuration

parameter if only one database set is being used or if the database set that you

want is the first one (with the version number). Otherwise, a database set must

be provided (see “Defining the Rational ClearQuest user database and database

set” on page 204).

v Cannot find the Rational ClearQuest user database name

Check the CQCC_DATABASE_ENTITY_LIST configuration parameter (see

“Defining the Rational ClearQuest user database and database set” on page 204).

v Record types do not have the Rational ClearCase package installed in the

Rational ClearQuest schema

An error message typically reports that there is no cc_change_set object, a

stateless record type that is defined by the ClearCase 1.0 package. Consult your

Rational ClearQuest administrator (see “Setting up the Rational ClearQuest user

database for base ClearCase” on page 196).

v Rational ClearQuest Web client problems

Try to replace the ASP interface with Rational ClearQuest Web and vice versa

(see “Establishing the Rational ClearQuest Web interface” on page 203).

v Rational ClearQuest Web client cannot connect

First, see whether you can use a browser to connect to the Rational ClearQuest

Web interface. The Rational ClearQuest Web client uses a separate connection

mechanism, so there can be separate security issues (see “Establishing the

Rational ClearQuest Web interface” on page 203).

Making policy choices

Examine the following policy choices that control how the developers work in the

Rational ClearCase environment:

v “Allowing multiple associations”

v “Controlling query usage” on page 210

v “Allowing use of the graphic user interface (GUI)” on page 211

v “Forcing checkin success before committing associations” on page 211

Allowing multiple associations

In some environments, you want to capture the fact that one fix in the software

resolved multiple problems that are recorded against the component. In the

configuration file, set the CQCC_MULTIPLE_ASSOCS configuration parameter to

TRUE to allow more than one change request record to be associated with an

element that is being changed. For example:

&SetConfigParm("CQCC_MULTIPLE_ASSOCS", "TRUE");

If CQCC_MULTIPLE_ASSOCS is FALSE, then only one association is allowed for

each version.

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 209

Controlling query usage

Set the CQCC_QUERY_ENABLE and CQCC_QUERY_FILTER configuration

parameters to control query usage. For more information about queries in the

integration, see “Query support” on page 192.

CQCC_QUERY_ENABLE

If developers use the Rational ClearQuest client, use the CQCC_QUERY_ENABLE

configuration parameter to determine which Rational ClearQuest queries are

available to developers to search for associations. The following values control

query usage:

BOTH Both CQ and LOCAL. Queries defined both in the Rational ClearQuest

user database and locally in the configuration file are available.

CQ Only named queries defined in the Rational ClearQuest user database

schema and visible in Personal Queries and Public Queries folders in the

workspace are available.

Restriction: To be used with the integration, a query must have the first

column defined as the ID field that is generated by Rational

ClearQuest. If the ID field is not first, the integration cannot

identify and work with the user’s selections that are returned

from the query. See “SetResultSet” on page 206.

LOCAL

Only queries defined locally in the configuration file are available. By

default, only local queries are shown.

OFF The Browse buttons and Queryname menu option are not displayed in the

user interface.

 For example:

&SetConfigParm("CQCC_QUERY_ENABLE", "BOTH");

Product tip: The full range of query capabilities is available only with the Rational

ClearQuest Client through the Rational ClearQuest Perl API. The

Rational ClearQuest Web interface displays only local queries due to

limitations in the Rational ClearQuest Web API.

To open up query capabilities for users of the Rational ClearQuest Client, modify

the CQCC_QUERY_ENABLE configuration parameter setting.

CQCC_QUERY_FILTER

The CQCC_QUERY_FILTER configuration parameter refines availability of Rational

ClearQuest queries. With the CQCC_QUERY_FILTER setting, you can control

which queries from the Rational ClearQuest user database workspace are

permissible. Provide a Perl regular expression that the query names must match.

For example:

&SetConfigParm("CQCC_QUERY_FILTER", "Public Queries");

If the filter is set to ″Public Queries,″ only queries with that string in their path are

shown in the list from which the developer selects.

210 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Allowing use of the graphic user interface (GUI)

With the CQCC_GUI_ENABLE configuration parameter, the project manager or

developers can choose to use the integration with a Perl/TK GUI.

CQCC_GUI_ENABLE is used to enable or disable the Perl/TK GUI. The following

values are used:

’ALWAYS’

The GUI is presented for command-line access as well, when possible.

’OFF’ The GUI is never presented and Perl/TK is not loaded.

’ON’ If Perl/TK support is available and ClearCase Explorer or the File Browser

is in use, then the GUI is presented.

 For example:

&SetConfigParm("CQCC_GUI_ENABLE", "ON");

Forcing checkin success before committing associations

The CQCC_POSTCHECKIN_COMMIT configuration parameter enables the

integration on checkin to delay committing associations in the Rational ClearQuest

user database until after the Rational ClearCase checkin operation completes. This

delay avoids problems caused if the checkin fails. Because the integration relies on

a preoperation checkin trigger, it makes database changes to both the Rational

ClearCase VOB and Rational ClearQuest user database before the checkin

succeeds. If the checkin fails and the developer cancels the checkout, the Rational

ClearQuest user database retains references to the checkin that never completed.

Also, checking in identical files without the -identical option does not succeed. If

the failed files are later checked out, the associations committed with the previous

unsuccessful operation are incorrect. Using this configuration parameter avoids this

problem. For example:

&SetConfigParm("CQCC_POSTCHECKIN_COMMIT", "TRUE");

By default, only the preoperation trigger fires on checkin. With this option enabled

(set to TRUE), the preoperation trigger is used to decide associations and a second

postoperation trigger fires to make the actual database changes. Using this option

can also require an extra Rational ClearQuest login on the postoperation trigger.

The extra operations take more time because of the additional Rational ClearQuest

login but keeps a more accurate database.

Important: You can use the CQCC_ASSOC_BATCH_ENABLE environment

variable to help minimize the cost of the extra operations. However,

batch operations can be delayed under certain conditions. For

information about those conditions, see “Using the association batch

feature.”

Enhancing performance

The performance of the integration triggers can vary depending on how they

access Rational ClearCase and Rational ClearQuest configurations. The

CQCC_TIMER configuration parameter can record diagnostic timing information

about the trigger session (see “Producing timing information” on page 216).

Using the association batch feature

The configuration parameter CQCC_ASSOC_BATCH_ENABLE in the configuration

file reduces the number of Rational ClearQuest logins and queries performed for

batches of files. The following values control the batch feature:

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 211

AUTOFLUSH

Causes batches to be processed for each file in a defined series instead of

waiting for the end of the series.

FALSE

Disables the association batch feature. Performs each transaction by

establishing a new connection to the Rational ClearQuest user database,

completing processing the single transaction, and closing the connection.

TRUE Enables the association batch feature and reduces the amount of overhead

processing. Performs one Rational ClearQuest login, establishes a new

connection to the Rational ClearQuest user database, processes multiple

transactions in a series, and closes the connection at the end of the series.

 Use the value TRUE to enable the reduction. For example:

&SetConfigParm("CQCC_ASSOC_BATCH_ENABLE", "TRUE");

This reduction is done by writing Rational ClearQuest transactions to a log file

(.cqcc_assoc_batch) that is stored in the developer home directory (on Linux and

the UNIX system) or in the application data directory (on the Windows system).

When the batch completes, the transaction log file is read back and all the

necessary Rational ClearQuest changes are made at the same time. The association

batch feature improves performance in many cases.

The log is automatically processed at the end of each single operation or at the end

of a batch operation. A batch is defined either as a set of files used in one Rational

ClearCase operation, for example, a multiple-checkout, or as defined by the user

using the CQCC_ASSOC_BATCH_SERIES environment variable (see “Defining a

batch” on page 213).

If posting the log file fails, resolve the problem (for example, a login failure) and

try again by either doing another Rational ClearCase operation or forcing the log

to be processed (see “Handling an incomplete posting”). The log file can be rerun

without causing duplications and is automatically renamed and moved aside when

the posting process succeeds.

If you use the CQCC_POSTCHECKIN_COMMIT configuration parameter (see

“Forcing checkin success before committing associations” on page 211), then any

failed checkins are not written to the log for processing.

If you currently have the association batch feature enabled, you can gradually stop

using batch processing by specifying AUTOFLUSH. For example:

&SetConfigParm("CQCC_ASSOC_BATCH_ENABLE", "AUTOFLUSH");

Batches are processed for each file in a defined series instead of waiting for the

end of the series. Although each file is processed individually to completion, the

pending transaction is saved locally to a log file until the transaction successfully

completes. If the transaction fails, it is retried with the next Rational ClearQuest

operation based on the locally stored information. The performance benefit of

batch processing is lost, but reliability is maintained. If you instead disable batch

processing suddenly (specify FALSE for CQCC_ASSOC_BATCH_ENABLE) after

using it as a standard practice, you could leave unposted transactions in a locally

stored batch log.

Handling an incomplete posting

The association batch feature depends on the integration being called at the end of

a batch to process the log, usually after the last checkout or checkin completes. If

212 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

this last event is missed, for example, the last checkin failed because the file was

identical, the log is not processed and the Rational ClearQuest operations are not

posted. The data is not lost and is posted on the next successful Rational ClearCase

operation that can begin processing the log. But the log may stay in the stored

location for some time before the processing starts. You or the developer can force

the log to be processed by using the following command from a command shell in

the original VOB context:

cqcc_launch -vob -op batch

The batch operation processes any transactions that are in the log.

Defining a batch

If you use the CQCC_ASSOC_BATCH_ENABLE configuration parameter in the

configuration file (see “Using the association batch feature” on page 211), the

developer can also use the environment variable CQCC_ASSOC_BATCH_SERIES

to define a batch. A batch is ordinarily the set of files to which a single Rational

ClearCase operation is applied. The CQCC_ASSOC_BATCH_SERIES environment

variable provides a way for a developer to broaden the meaning of a batch to be a

series of Rational ClearCase operations. This is useful for checking in multiple files

more efficiently than checking them in one at a time.

If the CQCC_ASSOC_BATCH_SERIES environment variable is set to TRUE, the

integration assumes that a batch is in effect and operations are logged. When the

environment variable is set to FALSE, the next Rational ClearCase operation

automatically causes the logged operations to be run. Use this option carefully

because Rational ClearQuest changes are deferred if a series is in process. The

developer can force the batch log to be flushed. For example, a script that checks

in a series of files might look like this example (in the Windows system).

set CQCC_ASSOC_BATCH_SERIES=TRUE

cleartool ci -nc file1

cleartool ci -nc file2

set CQCC_ASSOC_BATCH_SERIES=FALSE

cqcc_launch -vob -op batch

The last command forces the batch log to be flushed.

Requesting confirmation of batch completion

You can provide a visual cue that the batch operation has completed successfully

by setting the CQCC_ASSOC_BATCH_CONFIRM configuration parameter. The

following values are supported:

ALWAYS

Displays an information window when the batch processing succeeds for a

single file or multiple files in a batch.

MULTIPLE

Displays an information window when the batch processing succeeds if

more than a single file is being processed in a batch.

OFF Nothing is reported.

 Set the value to MULTIPLE to avoid seeing the window for every operation. For

example:

&SetConfigParm("CQCC_ASSOC_BATCH_CONFIRM", "MULTIPLE");

Tuning automatic association features

If you use CQCC_AUTO_ASSOCIATE or CQCC_ASSOC_BATCH_SERIES to

automatically determine associations (see “Controlling and using automatic

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 213

associations”), use the CQCC_RESTRICTIONS_TIMEOUT configuration parameter

to limit extra processing during the batch. The timeout value controls the number

of seconds that a restrictions check can be reused during

CQCC_ASSOC_BATCH_SERIES log processing.

The integration normally rechecks the new associations each time interval by

logging into the Rational ClearQuest user database and performing a restrictions

query. The integration caches the most recent restrictions query results and reuses

them for a maximum time before it rechecks them again. After the time is

exceeded, a new Rational ClearQuest login and restrictions query are performed to

ensure that the selected associations are still valid. To delay this login operation

and query during batch processing, set the CQCC_RESTRICTIONS_TIMEOUT

configuration parameter in the configuration file or the environment variable to an

increased number of seconds. To use a timeout of 10 minutes, set the value to 600.

For example:

&SetConfigParm("CQCC_RESTRICTIONS_TIMEOUT, 600);

CQCC_RESTRICTIONS_TIMEOUT is set to 300 seconds (5 minutes) by default.

The minimum value is 0 (disabled) and the maximum is 1200 (20 minutes).

Controlling and using automatic associations

Use the CQCC_AUTO_ASSOCIATE_ENABLE configuration parameter to control

whether developers can use the CQCC_AUTO_ASSOCIATE and

CQCC_ASSOC_BATCH_SERIES environment variables.

Enabling and disabling automatic associations

In the configuration file, use the CQCC_AUTO_ASSOCIATE_ENABLE

configuration parameter to specify whether developers can use the

CQCC_AUTO_ASSOCIATE environment variable (see “Using automatic

associations”) or CQCC_ASSOC_BATCH_SERIES environment variable (see

“Defining a batch” on page 213).

v To prohibit use of CQCC_AUTO_ASSOCIATE or

CQCC_ASSOC_BATCH_SERIES, set CQCC_AUTO_ASSOCIATE_ENABLE to

″FALSE″.

v To allow use of CQCC_AUTO_ASSOCIATE or CQCC_ASSOC_BATCH_SERIES,

set CQCC_AUTO_ASSOCIATE_ENABLE to ″TRUE″. For example:

&SetConfigParm("CQCC_AUTO_ASSOCIATE_ENABLE", "TRUE");

Using automatic associations

If the CQCC_AUTO_ASSOCIATE_ENABLE configuration parameter is enabled in

the configuration file (see “Enabling and disabling automatic associations”), the

developers can specify one or more change requests to associate with a batch of

files on checkout and checkin operations without the user interface being

displayed. The integration uses the change requests that the developers specify

rather than prompting them through the user interface. (The ApplyToAll

mechanism in the integration user interface works only for files being versioned in

a single checkin or checkout command.) With this option, the developers can

handle large batches of files in multiple checkin and checkout commands.

The developers can set the CQCC_AUTO_ASSOCIATE environment variable to the

associations that they want to make and then start either cleartool, File Browser, or

ClearCase Explorer. The following values are recognized:

v To specify change requests, the developer uses the same conventions that are

used in the Type In option in the user interface. For example:

214 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

setenv CQCC_AUTO_ASSOCIATE "SAMPL1,2,3"

The value ″SAMPL1,2,3″ identifies change request IDs 1, 2, and 3 in the SAMPL

user database.

v To disable the option, the developer uses ″″.

v To select no change requests, the developer specifies ″-″.

The values that they specify remain in effect until they disable the option. For

example:

setenv CQCC_AUTO_ASSOCIATE ""

On checkin operations, the integration uses the values that they specify with this

option to override associations that they made on checkouts. If an error occurs, the

integration displays the related messages and starts the user interface for

associating change requests.

Specifying associations in comment patterns

If the CQCC_COMMENT_PATTERN configuration parameter is enabled in the

configuration file, the developers can provide that pattern to look for in checkout

or checkin comments. The pattern provides a list of associations to use and

replaces the prompting for associations by the integration interface. The pattern is

disabled by default and enabled by setting a nonempty pattern.

To enable this option, in the CQCC_COMMENT_PATTERN configuration

parameter, specify a pattern in the form of a Perl expression. For example:

&SetConfigParm("CQCC_COMMENT_PATTERN", "BUGS:\\[(\\S+)\\]");

This example uses double backslash characters to escape each backslash character.

The developers make associations by entering a checkin or checkout comment that

matches the pattern, as in the following example of a checkout comment:

"This fixes BUGS:[SAMPL1,2,3]"

The pattern that is supplied in the checkout comment matches the pattern that is

defined in the CQCC_COMMENT_PATTERN configuration parameter. This

method avoids starting the integration user interface for associating files with

change requests.

The change requests that developers enter on checkin commands override the

change requests that they specify on checkout commands.

If the CQCC_AUTO_ASSOCIATE configuration parameter and the

CQCC_COMMENT_PATTERN configuration parameter are enabled at the same

time, the integration uses CQCC_AUTO_ASSOCIATE when it makes associations.

Debugging and analyzing operations

Environment variables are useful in troubleshooting and working with IBM

Customer Support.

Generating operational information

To produce debugging information, set the CQCC_DEBUG environment variable

with one of the following formats:

On Linux and the UNIX system: setenv CQCC_DEBUG value

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 215

On the Windows system: set CQCC_DEBUG=value

For value, use one of the following numbers:

0 No debugging information

1 Basic debugging information

2 Verbose debugging information that includes Rational ClearQuest traffic

tracing

Producing timing information

To produce timing information, define the CQCC_TIMER configuration parameter

or environment variable. For example:

&SetConfigParm("CQCC_TIMER", "1");

This provides large-grain timing information for basic internal operations such as

Rational ClearQuest login, queries, and associations; and Rational ClearCase

information gathering and hyperlink maintenance. Set the value to zero (0) to

disable timing information.

The integration writes the information to standard output and can store it in a file

(see “Controlling logged output”).

Controlling logged output

Set the CQCC_LOG_OUTPUT configuration parameter to control the recording of

all warning, error, and fatal messages that are written to a log file for convenience

during problem diagnosis. Use the following values:

APPEND

Adds to the log file (use only during debugging).

OFF Disables log file output.

OVERWRITE

Overwrites the log file for each trigger session.

 For example:

&SetConfigParm("CQCC_LOG_OUTPUT", "OVERWRITE");

The log file name is cqcc_output.log. On Linux and the UNIX system, the file is

written to the user’s home directory. On the Windows system, the file is written to

the profile directory.

Testing the integration

After you install the triggers on one or more VOBs and edit the configuration file,

you can test the connection between Rational ClearCase and Rational ClearQuest

configurations by entering the following command:

On Linux and the UNIX system:

cqcc_launch CQCC/config.pl -test

On the Windows system:

cqcc_launch CQCC\config.pl -test

Tip: The preceding commands use the default path for the configuration file. If

you specified a path to a central location when you configured the

216 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

integration, use that path when invoking the cqcc_launch command (see

“Using a shared configuration file and triggers” on page 198).

The command displays output indicating whether it is able to connect to the target

Rational ClearQuest user database. For more detailed output messages, set the

CQCC_DEBUG environment variable to 2 (see “Generating operational

information” on page 215).

Customizing the integration

To understand how the overall trigger works or how to customize its behavior,

review the TriggerCQCC.pm class and its methods. Most changes in the visible

behavior of the trigger require changes in this class.

Tip: For internal documentation, contact IBM Customer Support.

If you make local changes, use the following procedure:

1. Make a copy of the MyTrigger.pm template class.

2. Rename the copy.

3. Make your changes in the renamed file by overriding or extending the

TriggerCQCC methods (see MyTrigger.pm for more details).

Tip: Do not make changes directly to the TriggerCQCC source code.

Following this procedure facilitates upgrading to later releases of TriggerCQCC.pm

from Rational ClearCase and provides a fallback to the released trigger for

working with IBM Customer Support. For information about support, see “Policy

regarding customization and support” on page 194.

About the Integration Query wizard

After developers establish associations between Rational ClearCase versions and

Rational ClearQuest change requests, you can use the Rational ClearQuest

Integration Query wizard on Windows systems to identify the change requests that

are associated with a project over a period of time. For example, you might use the

wizard to answer the question, “Which change requests were associated with

Release 3.1 of Project X?”

To start the Integration Query wizard

Do one of the following:

v Click Start > Programs > IBM Rational > IBM Rational ClearCase >

Administration > ClearQuest Integration Query.

v Enter cqquery at the command prompt.

Click Help for instructions on completing each page of the wizard.

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 217

218 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 14. Integrating changes

This chapter describes merging versions of text-file elements or directories. A

merge calls an element-type-specific program (the merge method) to merge the

contents of two or more files, or two or more directories.

About integrating changes

In a parallel development environment, the opposite of branching is merging. In

the simplest scenario, merging incorporates changes on a subbranch into the main

branch. However, you can merge work from any branch to any other branch. You

need to be familiar with techniques and scenarios for merging versions of elements

and branches. Automated merge facilities are included in Rational ClearCase to

handle almost any scenario.

How merging works

A merge combines the contents of two or more files or directories into a single new

file or directory. The Rational ClearCase merge algorithm uses the following files

during a merge (see Figure 53):

v Contributors, which are typically one version from each branch you are merging.

(You can merge up to 15 contributors.) You specify which versions are

contributors.

v The base contributor, which is typically the closest common ancestor of the

contributors. (For selective merges, subtractive merges, and merges in an

environment with complex branch structures, the base contributor may not be

the closest common ancestor.) The Rational ClearCase merge algorithm

determines which contributor is the base contributor.

v The target contributor, which is typically the latest version on the branch that

will contain the results of the merge. You determine which contributor is the

target contributor.

v The merge output file, which contains the results of the merge and is usually

checked in as a successor to the target contributor. By default, the merge output

file is the checked-out version of the target contributor, but you can choose a

different file to contain the merge output.

© Copyright IBM Corp. 1992, 2006 219

Merging files and directories involves the following actions:

1. The base contributor is identified.

2. Each contributor is compared against the base contributor. (See Figure 54.)

3. Any line that is unchanged between the base contributor and any other

contributor is copied to the merge output file.

4. Any line that has changed between the base contributor and one other

contributor is accepted in the contributor.

Depending on how you started the merge operation, the change may be copied

to the merge output file. However, you can disable the automated merge

capability for any given merge operation. If you disable this capability, you

must approve each change to the merge output file.

5. For any line that has changed between the base contributor and more than one

other contributor, you are required to resolve the conflicting difference.

4

5

6

7

8

4

5

6

0

1

2

3

element: opt.c

r1_fix

main

Contributor

Base contributor

Target contributor

Merge
output file

Figure 53. Versions involved in a typical merge

(b, c1) (b, c2)

B

C1 C2

Destination version = B + (b, c1) + (b, c2)

Base
Contributor

Source
Contributors

Figure 54. Rational ClearCase merge algorithm

220 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To merge versions, you can use the graphic user interface (GUI) tools (see “Using

the GUI to merge elements” on page 221) or the command-line interface (see

“Using the command line to merge elements” on page 222).

Using the GUI to merge elements

Three graphical tools are provided to help you merge elements:

v Merge Manager

v Diff Merge

v Version Tree Browser

About the Merge Manager

The Merge Manager manages the process of merging one or more Rational

ClearCase elements. It automates the processes of gathering information for a

merge, starting a merge, and tracking a merge. It can also save and retrieve the

state of a merge for a set of elements.

You can use the Merge Manager to merge from many directions:

v From a branch to the main branch

v From the main branch to another branch

v From one branch to another branch

To start the Merge Manager

On the UNIX system, type clearmrgman at a command prompt.

On the Windows system, do one of the following:

v Click Start > Programs > IBM Rational > IBM Rational ClearCase > Merge

Manager.

v In ClearCase Explorer, click Base ClearCase, and then click Merge Manager.

About Diff Merge

The Diff Merge utility shows the differences between two or more versions of file

or directory elements. Use this tool to compare up to 16 versions at a time,

navigate through versions, merge versions, and resolve differences between

versions.

To start Diff Merge

On the UNIX system, do one of the following at a command prompt:

v Type xcleardiff path_1 path_2.

v Use the cleartool merge –graphical command.

On the Windows system, do one of the following:

v In Rational ClearCase Explorer, right-click an element and click Compare with

Previous Version.

v In Windows Explorer, right-click an element and click ClearCase > Compare

with Previous Version.

v In the Merge Manager, click Compare.

About the Version Tree Browser

The Version Tree Browser displays the version tree for an element. The version tree

is useful when merging to do the following tasks:

v Locate versions or branches that have contributed to or resulted from a merge

v Start a merge by clicking on the appropriate symbol

Chapter 14. Integrating changes 221

The merge can be recorded with a merge arrow, which is implemented as a

hyperlink of type Merge.

To start the Version Tree Browser

On the UNIX system, do one of the following:

v At a command prompt, use the cleartool lsvtree –graphical command.

v In File Browser, click an element and click Versions > Show version tree

On the Windows system, do one of the following:

v In Rational ClearCase Explorer, click Tools > Version Tree.

v Click Start > Programs > IBM Rational > IBM Rational ClearCase > Version

Tree Browser

v In Windows Explorer, right-click a versioned element and click ClearCase >

Version Tree.

Using the command line to merge elements

Use the following commands to perform merges from the command line:

v cleartool merge

v cleartool findmerge

v cleardiff

For more information on these commands, see the IBM Rational ClearCase Command

Reference.

Common merge scenarios

The following sections present a series of merge scenarios that require work on one

branch of an element to be incorporated into another branch.

v “Selective merge from a subbranch” on page 222

v “Removing the contributions of some versions” on page 223

v “Merging all project work” on page 224

v “Merging a new release of an entire source tree” on page 225

v “Merging directory versions” on page 227

Each scenario shows the version tree of an element that requires a merge and

indicates the appropriate command to perform the merge.

Selective merge from a subbranch

In a selective merge from a subbranch, you want to incorporate the changes in

version /main/r1_fix/4 into new development. To perform the merge, you specify

which versions on the r1_fix branch to include. See Figure 55.

222 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

In a view configured with the default config spec, enter the following commands

to perform the selective merge:

cleartool checkout opt.c

cleartool merge –to opt.c –insert –version /main/r1_fix/4

You can also specify a range of consecutive versions to be merged. For example,

this command merges only the changes in versions /main/r1_fix/2 through

/main/r1_fix/4:

cleartool merge –to opt.c –insert –version /main/r1_fix/2 /main/r1_fix/4

No merge arrow is created for a selective merge.

Removing the contributions of some versions

In a subtractive merge, you remove contributions of some versions in the merge.

For example, a new feature, implemented in versions 14 through 16 on the main

branch, are not be included in the product. You must remove the changes made in

those versions. See Figure 56.

merge

element: opt.c

r1_fix

QA_APPROVED

main

Versions included

Versions excluded

4

5

6

7

8

4

5

6

0

1

2

3

Figure 55. Selective merge from a subbranch

Chapter 14. Integrating changes 223

Enter the following commands to perform this subtractive merge:

cleartool checkout opt.c

cleartool merge –to opt.c –delete –version /main/14 /main/16

No merge arrow is created for a subtractive merge.

Merging all project work

Your team has been working on a branch. Now, your job is to merge all the

changes into the main branch.

The findmerge command can handle most common cases easily. For isolating the

project work, the command can accommodate the schemes described in “All

project work isolated on a branch” and “All project work isolated in a view” on

page 225.

All project work isolated on a branch

The standard approach to parallel development isolates all project work on the

same branch. More precisely, all new versions of source files are created on

like-named branches of their respective elements (that is, on branches that are

instances of the same branch type). This makes it possible for a single findmerge

command to locate and incorporate all the changes. Suppose the common branch

is named gopher. You can enter these commands in a view configured with the

default config spec:

cd root-of-source-tree

cleartool findmerge . –fversion .../gopher/LATEST –merge –graphical

The –merge –graphical syntax causes the merge to take place automatically

whenever possible, and to start the graphical merge utility if an element merge

Figure 56. Removing the contributions of some versions

224 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

requires user interaction. If the project has made changes in several VOBs, you can

perform all the merges at once by specifying several paths, or by using the –avobs

option to findmerge.

All project work isolated in a view

Some projects are organized so that all changes are made in a single view

(typically, a shared view). For such projects, use the –ftag option to findmerge.

Suppose the project work has been done in a view whose view tag is goph_vu.

These commands perform the merge:

cd root-of-source-tree

cleartool findmerge . –ftag goph_vu –merge –graphical

Tip: Working in a single shared view is not recommended because doing so can

degrade system performance.

Merging a new release of an entire source tree

Your team has been using an externally supplied source-code product, maintaining

the sources in a VOB. The successive versions supplied by the vendor are checked

in to the main branch and labeled VEND_R1, VEND_R2, and VEND_R3. Your

team’s fixes and enhancements are created on subbranch enhance. The views in

which your team works have the following configuration to branch from the

VEND_R3 baseline:

element * CHECKEDOUT

element * .../enhance/LATEST

element * VEND_R3 -mkbranch enhance

element * /main/LATEST -mkbranch enhance

The version trees in Figure 57 show the following various likely cases:

v An element that your team started changing at Release 1 (enhance branch

created at the version labeled VEND_R1)

v An element that your team started changing at Release 3

v An element that your team has never changed

Chapter 14. Integrating changes 225

When Release 4 arrives, and you need to integrate this release with your team’s

changes.

To prepare for the merge, add the new release to the main branch and label the

versions VEND_R4. Merging the source trees involves merging from the version

labeled VEND_R4 to the most recent version on the enhance branch; if an element

has no enhance branch, nothing is merged.

This procedure accomplishes the following integration:

1. Load the vendor’s Release 4 media into a standard directory tree:

cd /usr/tmp

tar –xv

The directory tree created is mathlib_4.0.

2. As the VOB owner, run clearfsimport in a view configured with the default

config spec to create Release 4 versions on the main branches of elements (and

create new elements as needed).

clearfsimport –recurse /usr/tmp/mathlib_4.0 /vobs/proj/mathlib

3. Label the new versions:

% cleartool mklbtype –c "Release 4 of MathLib sources" VEND_R4

Created label type "VEND_R4".

% cleartool mklabel –recurse VEND_R4 /vobs/proj/mathlib

 . (lots of output)

 .

4. Set to a view that is configured with your team’s config spec and selects the

versions on the enhance branch:

cleartool setview enh_vu

5. Merge from the VEND_R4 configuration to your view:

previous
merges

0

1

2

3

4

0

1

2

3

VEND_R1

main main

enhance

VEND_R3

VEND_R2

5

0

1

2

3

0

1

2

3

VEND_R1

enhance

VEND_R3

VEND_R2

Figure 57. Merging a new release of an entire source tree

226 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

cleartool findmerge -nback /vobs/proj/mathlib –fver VEND_R4 –merge \

–graphical

The –merge –graphical syntax instructs findmerge to merge automatically if

possible, but if not, start the graphical merge tool.

6. Verify the merges, and check in the modified elements.

You have now established Release 4 as the new baseline. Developers on your team

can update their view configurations.

 element * CHECKEDOUT

element * .../enhance/LATEST

element * VEND_R4 –mkbranch enhance

element * /main/LATEST –mkbranch enhance

(change from VEND_R3 to VEND_R4)

Elements that have been active continue to evolve on their enhance branches.

When elements are revised for the first time, their enhance branches are created at

the VEND_R4 version.

Merging directory versions

A feature of Rational ClearCase is versioning of directories. Each version of a

directory element catalogs a set of file elements and directory elements (and VOB

symbolic links on the UNIX system). In a development project, directories change

as often as files do. Merging the changes to another branch is as easy merging files.

Take a closer look at the source tree scenario that is described in “Merging a new

release of an entire source tree” on page 225. Suppose you find that the vendor has

made the following changes in directory /vobs/proj/mathlib/src:

v File elements Makefile, getcwd.c, and fork3.c are revised.

v File elements readln.c and get.c are deleted.

v A new file element, newpaths.c, is created.

When you use findmerge to merge the changes made in the VEND_R4 sources to

the enhance branch, the changes to both the files and the directory are handled

automatically. The following findmerge excerpt shows the directory merge activity:

<<< directory 1: /vobs/proj/mathlib/src@@/main/3

>>> directory 2: .@@/main/enhance/1

>>> directory 3: .

-------[removed directory 1]-------|----------[directory 2]------------

get.c 19-Dec-1991 drp |-

*** Automatic: Applying REMOVE from directory 2

-----------[directory 1]-----------|--------[added directory 2]---------

 -| newpaths.c 08-Mar.21:49 drp

*** Automatic: Applying ADDITION from directory 2

-------[removed directory 1]-------|-----------[directory 2]------------

readln.c 19-Dec-1991 drp |-

*** Automatic: Applying REMOVE from directory 2

Recorded merge of ".".

If you have changes to merge from both files and directories, it may be a good

idea to run findmerge twice: first to merge directories, and again to merge files.

Using the –print option to a findmerge command does not report everything that

is merged, because findmerge does not see new files or subdirectories in the

merge-from version of a directory until after the directories are merged. To report

Chapter 14. Integrating changes 227

every merge that takes place, use findmerge to merge the directories only, and

then use findmerge –print to get information about the file merges that are

needed. Afterward, you can cancel the directory merges by using the uncheckout

command on the directories.

Using other merge tools

You can create a merged version of an element manually or with any available

analysis and editing tools. Check out the target version, revise it, and check it in.

Immediately before (or after) the checkin, record your activity by using the merge

command with the –ndata (no data) option:

% cleartool checkout nextwhat.c

Checkout comments for "nextwhat.c":

merge enhance branch

.

Checked out "nextwhat.c" from version "/main/1".

% <invoke your own tools to merge data into checked-out version>

% cleartool merge –to nextwhat.c –ndata –version .../enhance/LATEST

Recorded merge of "nextwhat.c".

This form of the merge command does not change any file system data; it merely

attaches a merge arrow (a hyperlink of type Merge) to the specified versions. After

you make this annotation, your merge is indistinguishable from one performed

with Rational ClearCase tools.

228 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 15. Using element types to customize file element

processing

This chapter describes element types, their creation, and their usage.

About element types and file processing

Most projects involve many different file types. For example, in a typical software

release, developers may work on language-specific source files, language-specific

header files, document files (in text and binary format), and library files.

Every file that is stored in a VOB is associated with an element type. Predefined

element types for various kinds of file types are provided, and every element type

has an associated type manager, which handles the operations performed on

versions of the element.

For some file types in your project, you may want to create your own element

types so that you can customize the handling of the files. You can also create your

own type managers.

You need to understand how element types are used, how type managers classify

and manage files, and how you can customize file classification and management.

File types in a typical project

Table 7 lists the file types used in a typical development project.

 Table 7. Files used in a typical project

Type of file Identifying characteristic

Source files

C-language source file .c file name extension

C-language header file .h file name extension

FrameMaker binary file .doc or .mif file name extension, first line of

file begins with <Maker

The UNIX system: manual page source file .1 to .9 file name extension

Derived files

The UNIX system: ar(1) archive (library) .a file name extension

The Windows system: library, shared

library

.lib, .dll file name extension

Compiled executable The UNIX system: <varies with system

architecture>

The Windows system: .exe file name

extension

© Copyright IBM Corp. 1992, 2006 229

How element types are assigned

In various contexts, one or more file types may be determined for an existing file

system object, or for a name to be used for a new object. When you create a new

element and do not specify an element type, the file type for the element is

determined by default.

The file-typing routines use predefined and user-defined magic files, as described in

the cc.magic reference page. A magic file can use many different techniques to

determine a file type, including file name pattern-matching, stat(2) data, and

standard magic numbers on the UNIX system.

For example, the magic files in “Sample magic file on the UNIX system” and

“Sample Magic File on the Windows system” specify several file types for each

kind of file listed in Table 7.

Sample magic file on the UNIX system

(1) c_src src_file text_file file: -name "*.c" ;

(2) hdr_file text_file file: -name "*.h" ;

(3) frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;

(4) manpage src_file text_file file: -name "*.[1-9]" ;

(5) archive derived_file file: -magic 32, "archive" ;

(6) sunexec derived_file file: -magic 40, "SunBin" ;

Sample Magic File on the Windows system

(1) c_src src_file text_file file: -name "*.c";

(2) hdr_file text_file file: -name "*.h" ;

(3) frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;

(4) library derived_file file: -name "*.lib";

(5) program compressed_file: -name "*.exe" ;

Element types and type managers

Different classes of files are handled differently because element types are used to

categorize elements. Each file element in a VOB must have an element type. An

element gets its type when it is created; you can change the type of an element

subsequently, with the chtype command. (An element is an instance of its element

type, in the same way that an attribute is an instance of an attribute type and a

version label is an instance of a label type.)

Each element type has an associated type manager, a suite of programs that handle

the storage and retrieval of versions from storage pools. (See the type_manager

reference page for information on how type managers work.) Thus, the way in

which the data of a file element is handled depends on its element type.

Tip: Each directory element also has an element type. But directory elements do

not use type managers; the contents of a directory version are stored in the

VOB database itself, not in storage pools.

When you create an element without specifying the element type, an element type

is assigned as follows:

v One or more magic files are read to find the file types for the name of the

element.

v The list of file types associated with the first rule in the magic file that matches

the name is retrieved.

230 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v This list is compared with the set of element types defined for the VOB that

stores the element. The element is created by using the first element type in the

list that matches an element type in the VOB.

For example, a new element named monet_adm.1 is assigned an element type as

follows:

1. A developer creates an element:

cleartool mkelem monet_adm.1

2. Because the developer did not specify an element type (–eltype option),

mkelem uses one or more magic files to determine the file types of the

specified name.

Tip: A search path facility uses the environment variable MAGIC_PATH. See

the cc.magic reference page for details.

If the magic file shown in “Sample magic file on the UNIX system” on page

230 is the first (or only) one to be used, rule “(4)” on page 230 is the first to

match the name monet_adm.1, yielding this list of file types:

manpage src_file text_file file

3. This list is compared with the set of element types defined in the VOB for the

new element. If text_file is the first file type that names an existing element

type, monet_adm.1 is created as an element of type text_file.

4. Data storage and retrieval for versions of element monet_adm.1 are handled by

the type manager associated with the text_file element type; its name is

text_file_delta:

% cleartool describe eltype:text_file

element type "text_file"

...

 type manager: text_file_delta

 supertype: file

 meta-type of element: file element

File-typing mechanisms are defined on a per-user or per-site basis; element types

are defined on a per-VOB basis. (To ensure that element types are consistent across

VOBs, the Rational ClearCase administrator can use global types.) In this case, a

new element, monet_adm.1, is created as a text_file element; in a VOB with a

different set of element types, the same magic file may have created it as a src_file

element.

Other applications of element types

Element types allow differential and customized handling of files beyond the

selection of type managers. Some examples are presented in “Using element types

to configure a view” and “Processing files by element type” on page 232.

Using element types to configure a view

Creating all C-language header files as elements of type hdr_file allows flexibility

in configuring views. Suppose that one developer reorganizes the project header

files, working on a branch named header_reorg to avoid disrupting the team’s

work. To compile with the new header files, another developer can use a view

re-configured with one additional rule:

element * CHECKEDOUT

element -eltype hdr_file * /main/header_reorg/LATEST

element * /main/LATEST

Chapter 15. Using element types to customize file element processing 231

Processing files by element type

Suppose that a coding-standards program named check_var_names executes on

each C-language source file. If all such files have element type c_src, a single

cleartool command runs the program:

On the UNIX system:

cleartool find –avobs –visible –element ’eltype(c_src)’ \

 –exec ’check_var_names $CLEARCASE_PN’

On the Windows system:

cleartool find –avobs –visible –element ’eltype(c_src)’ ^

 –exec ’check_var_names %CLEARCASE_PN%’

Predefined and user-defined element types

Some of the element types described in this chapter (for example, text_file) are

predefined. Others (for example, c_src and hdr_file) are not predefined; the

previous examples work only if user-defined element types with these names are

created with the mkeltype command.

When a new VOB is created, it contains a full set of the predefined element types.

Each element type is associated with one of the type managers provided with

Rational ClearCase. The mkeltype reference page describes the predefined element

types and their type managers.

When you create a new element type with mkeltype, you must specify an existing

element type as its supertype. By default, the new element type uses the same type

manager as its supertype; in this case, the only distinction between the new and

old types is for the purposes described in “Other applications of element types” on

page 231. For differential data handling, use the –manager option to create an

element type that uses a different type manager from its supertype.

Predefined and user-defined type managers

Predefined type managers are provided in Rational ClearCase. The type managers

are described in the type_manager reference page. Each type manager is

implemented as a suite of programs in a subdirectory of ccase–home–dir/lib/mgrs;

the name of the subdirectory is the name of the type manager.

The mkeltype –manager command creates an element type that uses an existing

type manager. You can further customize Rational ClearCase by creating new type

managers and creating new element types that use them. Architecturally, type

managers are mutually independent, but new type managers can use symbolic

links to inherit some of the functions of existing ones.

Creating a new type manager (the UNIX system)

On the UNIX system, you can create any number of new type managers for use

throughout the local network. Use these guidelines:

v Choose a name for the new type manager. Ideally the name shows its

relationship to the data format (for example, bitmap_mgr). Create a subdirectory

of ccase–home–dir/lib/mgrs with this name.

Tip: Names of user-defined type managers must not begin with underscore.

v Create symbolic links to make the new type manager inherit some of its

methods (file-manipulation operations) from an existing type manager.

232 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v Create your own program for the methods that you want to customize. See

“Writing a type manager program (the UNIX system).”

v On each Rational ClearCase or Rational ClearCase LT client host in the network,

either make a copy of the new type manager directory or create symbolic link to

it. The standard storage, performance, and reliability trade-offs apply.

v If your organization uses Rational ClearCase MultiSite, at every site, either make

a copy of the new type manager directory, or create a symbolic link to it.

Tip: An element type belongs to a VOB, and thus is available on every host that

mounts its VOB. But a type manager is host-specific; it is the

ccase–home–dir/lib/mgrs/manager-name directory on some host.

See the type_manager reference page and the file

ccase–home–dir/lib/mgrs/mgr_info.h for additional information on type managers.

Writing a type manager program (the UNIX system)

When cleartool invokes a type manager method, it passes to the manager, in ASCII

format, all the arguments needed to perform the operation. For example, many

methods accept a new_container_name argument, specifying the path of a data

container to which data is to be written.

One or more of the parameters can be ignored. For example, the create_version

method is passed pred_container_name, the path of the predecessor version data

container. If the type manager implements incremental differences, this is required

information. Otherwise, the predecessor data container is of no interest.

Arguments are often object identifiers (OIDs). You need not know anything about

how OIDs are generated; consider each OID to be a unique name for an element,

branch, or version. In general, only type managers that store multiple versions in

the same data container need be concerned with OIDs.

For more information on argument processing, see files

ccase–home–dir/lib/mgrs/mgr_info.h (for C-language programs) and

ccase–home–dir/lib/mgrs/mgr_info.sh (for Bourne shell scripts).

Exit status of a method

A user-defined type manager method must return to cleartool an exit status that

indicates how the command is to be completed. The symbolic constants in

ccase–home–dir/lib/mgrs/mgr_info.sh specify all valid exit statuses. For example,

an invocation of create_version may create a new data container, and return the

exit status MGR_STORE_KEEP_JUST_NEW. If creation of the new data container

fails, create_version returns the exit status MGR_STORE_KEEP_JUST_OLD.

Type manager for manual page source files

One kind of file supported is a manual page source file, which is coded in nroff(1)

format (see Table 7). A type manager for this kind of file may have these

characteristics:

v It stores all versions in compressed form in separate data containers, like the

z_whole_copy type manager.

v It implements version-comparison (compare method) by running diff on

formatted manual pages instead of the source versions.

Chapter 15. Using element types to customize file element processing 233

The basic strategy is to use most of the z_whole_copy type manager methods. The

compare method uses nroff(1) to format the versions before displaying their

differences.

Creating the type manager directory

The name mp_mgr (manual page manager) is appropriate for this type manager.

The first step is to create a subdirectory with this name in the

ccase–home–dir/lib/mgrs directory. For example:

mkdir /usr/rational/lib/mgrs/mp_mgr

Inheriting methods from another type manager

Most of the mp_mgr methods are inherited through symbolic links from the

z_whole_copy type manager. You can enter the following commands as the root

user in a Bourne shell:

MP=$CLEARCASEHOME/lib/mgrs/mp_mgr

for FILE in create_element create_version construct_version \

 create_branch delete_branches_versions \

 merge xmerge xcompare get_cont_info

> do

> ln –s ../z_whole_copy/$FILE $MP/$FILE

> done

Any methods that the new type manager does not support can be omitted from

this list. The lack of a symbolic link causes an Unknown Manager Request error.

The sections “The create_version method” and “The construct_version method” on

page 235 describe two of these inherited methods, which can serve as models for

user-defined methods. Both methods are implemented as scripts in the same file,

ccase–home–dir/lib/mgrs/z_whole_copy/Zmgr.

The create_version method

The create_version method is invoked when a checkin command is entered. The

create_version method of the z_whole_copy type manager does the following

operations:

1. Compresses the data in the checked-out version

2. Stores the compressed data in a data container located in a source storage pool

3. Returns to the calling process an exit status that indicates what to do with the

new data container

The file ccase–home–dir/lib/mgrs/mgr_info.h lists the arguments passed to the

method from the calling program (usually cleartool or File Browser):

/**

 * create_version

 * Store the data for a new version.

 * Store the version’s data in the supplied new container, combining it

 * with the predecessor’s data if desired (e.g for incremental deltas).

 *

 * Command line:

 * create_version create_time new_branch_oid new_ver_oid new_ver_num

 * new_container_pname pred_branch_oid pred_ver_oid

 * pred_ver_num pred_container_pname data_pname

The only arguments that require special attention are new_container_pname (fifth

argument), which specifies the path of the new data container, and data_pname

(tenth argument), which specifies the path of the checked-out file.

234 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The file ccase–home–dir/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and

provides a symbolic name for the create_version method:

Any unexpected value is treated as failure

MGR_FAILED=1

Return Values for store operations

MGR_STORE_KEEP_NEITHER=101

MGR_STORE_KEEP_JUST_OLD=102

MGR_STORE_KEEP_JUST_NEW=103

MGR_STORE_KEEP_BOTH=104

 .

 .

MGR_OP_CREATE_VERSION="create_version"

The following example is the code that implements the create_version method:

(1) shift 1

(2) if [-s $4] ; then

(3) echo ’$0: error: new file is not of length 0!’

(4) exit $MGR_FAILED

(5) fi

(6) if $gzip < $9 > $4 ; ret=$? ; then : ; fi

(7) if ["$ret" = "2" -o "$ret" = "0"] ; then

(8) exit $MGR_STORE_KEEP_BOTH

(9) else

(10) exit $MGR_FAILED

(11) fi

The Bourne shell allows only nine command-line arguments. The shift 1 in Line 1

discards the first argument (create_time), which is unneeded. Thus, the path of the

checked-out version (data_pname), originally the tenth argument, becomes $9.

In Line 6, the contents of data_pname are compressed, then appended to the new,

empty data container: new_container_pname, originally the fifth argument, but

shifted to become $4. (Lines 2 through 5 verify that the new data container is,

indeed, empty.)

Finally, the exit status of the gzip command is checked, and the appropriate value

is returned (Lines 7 through 11). The exit status of the create_version method

indicates that both the old data container (which contains the predecessor version)

and the new data container (which contains the new version) are to be kept.

The construct_version method

An element construct_version method is invoked when standard software on the

UNIX system reads a particular version of the element (unless the contents are

already cached in a cleartext storage pool). For example, the construct_version

method of element monet_admin.1 is invoked by the view_server when a user

enters these commands:

% cp monet_admin.1 /usr/tmp

(read version selected by view)

% cat monet_admin.1@@/main/4

(read a specified version)

 The construct_version method is also invoked during a checkout command, which

makes a view-private copy of the most recent version on a branch.

The construct_version method of the z_whole_copy type manager does the

following operations:

Chapter 15. Using element types to customize file element processing 235

1. Uncompresses the contents of the data container

2. Returns to the calling process an exit status that indicates what to do with the

new data container

The file ccase–home–dir/lib/mgrs/mgr_info.h lists the arguments passed to the

method.

/**

 * construct_version

 * Fetch the data for a version.

 * Extract the data for the requested version into the supplied path, or

 * return a value indicating that the source container can be used as the

 * cleartext data for the version.

 *

 * Command line:

 * construct_version source_container_pname data_pname version_oid

The file ccase–home–dir/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and

provides a symbolic name for the construct_version method:

Any unexpected value is treated as failure

MGR_FAILED=1

Return Values for construct operations

MGR_CONSTRUCT_USE_SRC_CONTAINER=101

MGR_CONSTRUCT_USE_NEW_FILE=102

 .

 .

MGR_OP_CONSTRUCT_VERSION="construct_version"

This example code in “The construct_version method source code” implements the

construct_version method.

The construct_version method source code:

(1) if $gzip -d < $1 > $2 ; then

(2) exit $MGR_CONSTRUCT_USE_NEW_FILE

(3) else

(4) exit $MGR_FAILED

(5) fi

 In Line 1, the contents of source_container_pname are uncompressed and stored in

the cleartext container, data_pname. The remaining lines return the appropriate

value to the calling process, depending on the success or failure of the gzip

command.

Implementing a new compare method

The compare method is invoked by a cleartool diff command. This method does

the following operations:

1. Formats each version using nroff(1), producing an ASCII text file

2. Compares the formatted versions, using cleardiff or xcleardiff

The file ccase–home–dir/lib/mgrs/mgr_info.h lists the arguments passed to the

method from cleartool or File Browser.

/**

 * compare

 * Compare the data for two or more versions.

 * For more information, see man page for cleartool diff.

 *

236 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Command line:

 * compare [-tiny | -window] [-serial | -diff | -parallel] [-columns n]

 * [pass-through-options] pname pname ...

******/

This listing shows that a user-supplied implementation of the compare method

must accept all the command-line options that the Rational ClearCase diff

command supports. The strategy here is to pass the options to cleardiff and not

attempt to interpret them. After all options are processed, the remaining arguments

specify the files to be compared.

The file ccase–home–dir/lib/mgrs/mgr_info.sh lists the appropriate exit statuses and

provides a symbolic name for the compare method.

Return Values for COMPARE/MERGE Operations

MGR_COMPARE_NODIFFS=0

MGR_COMPARE_DIFF_OR_ERROR=1

 .

 .

MGR_OP_COMPARE="compare"

The Bourne shell script listed in “Script for compare method” implements the

compare method. (You can modify this script to implement the xcompare method

as a slight variant of compare.)

Script for compare method

#!/bin/sh -e

MGRDIR=${CLEARCASEHOME:-/usr/rational}/lib/mgrs

read file that defines methods and exit statuses

. $MGR_DIR/mgr_info.sh

process all options: pass them through to cleardiff

OPTS=""

while (expr $1 : ’\-’ > /dev/null) ; do

 OPTS="$OPTS $1"

 if ["$1" = "$MGR_FLAG_COLUMNS"] ; then

 shift 1

 OPTS="$OPTS $1"

 fi

 shift 1

done

all remaining arguments ($*) are files to be compared

first, format each file with NROFF

COUNT=1

TMP=/usr/tmp/compare.$$

for X in $* ; do

 nroff -man $X | col | ul -Tcrt > $TMP.$COUNT

 COUNT=‘expr $COUNT + 1‘

done

then, compare the files with cleardiff

cleardiff -quiet $OPTS $TMP.*

cleanup and return appropriate exit status

if [$? -eq MGR_COMPARE_NODIFFS] ; then

 rm -f $TMP.*

 exit MGR_COMPARE_NODIFFS

else

 rm -f $TMP.*

 exit MGR_COMPARE_DIFF_OR_ERROR

fi

Chapter 15. Using element types to customize file element processing 237

Testing the type manager

Test a new type manager by using it on some Rational ClearCase host. This testing

procedure need not be obtrusive. Because the type manager has a new name, no

existing element type and, therefore, no existing element, uses it automatically. To

place the type manager in service, create a new element type, create some test

elements of that type, and run some tests.

The testing sequences that are described in “Creating a Test Element Type” and

“Creating and Using a Test Element” continue the mp_mgr example.

Creating a Test Element Type: To make sure that an untested type manager is not

used accidentally, associate it with a new element type, manpage_test, of which

you are the only user.

% cleartool mkeltype –nc –supertype compressed_file \

 –manager mp_mgr manpage_test

% cleartool lock –nusers $USER eltype:manpage_test

Creating and Using a Test Element: These commands create a test element that

uses the new type manager, and tests the various data-manipulation methods:

cd directory-in-test-VOB

cleartool checkout –nc .

(tests create_element method)

cleartool mkelem –eltype manpage_test –nc –nco test.1

(tests construct_version method)

cleartool checkout –nc test.1

vi test.1

(edit checked-out version)

cleartool checkin –c ″first″ test.1

(tests create_ version method)

cleartool checkout –nc test.1

(tests construct_ version method)

vi test.1

(edit checked-out version)

cleartool checkin –c ″second″ test.1

(tests create_ version method)

cleartool diff test.1@@/main/1 test.1@@/main/2

(tests compare method)

Installing and using the type manager

After a type manager is fully tested, make it available to all users with the

following procedure.

1. Install the type manager.

A VOB is a networkwide resource; it can be mounted on any Rational

ClearCase host. But a type manager is a host resource: a separate copy must be

installed on each host where Rational ClearCase client programs run. If the

copy is not installed, elements of the new type cannot be used. (It need not be

installed on hosts that serve only as repositories for VOBs, views, or VOBs and

views.)

238 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

If the VOB is replicated, you must install the type manager at all sites. Custom

type managers are not replicated.

To install the type manager on a particular host, create a subdirectory in

ccase–home–dir/lib/mgrs, and populate it with the programs that implement the

methods. You can create symbolic links across the network to a master copy on

a server host.

2. Create element types.

Create one or more element types that use the type manager, just as you did in

“Testing the type manager” on page 238 (do not include “test” in the name of

the element type). For example, you can name the element type manpage or

nroff_src.

3. Convert existing elements.

Have at least a few existing elements use the new type manager. The chtype

command changes an element type:

% cleartool chtype –force manpage path ...

Permission to change an element type is restricted to the element owner, the

VOB owner, and the root user.

4. Revise magic files.

If you want the new element types to be used automatically for certain newly

created elements, create (or update) a local.magic file in each host

ccase–home–dir/config/magic directory:

manpage src_file text_file file: -name "*.[1-9]" ;

5. Inform the project team (and other teams, if appropriate).

Advertise the new element types to all team members, describing the features

and benefits of the new type manager. Be sure to provide directions on how to

gain access to the new functionality automatically (through file names that

match magic-file rules) and explicitly (with mkelem –eltype).

Icon use by GUI browsers

The File Browser can display file system objects either by list or graphically. In the

latter case, the File Browser selects an icon for each file system object as follows:

1. The object name or its contents determines a list of file types, as described in

“How element types are assigned” on page 230.

2. One by one, the file types are compared to the rules in predefined and

user-defined icon files, as described in the cc.icon reference page. For example,

the file type c_source matches this icon file rule:

c_source : -icon c ;

When a match is found, the search ends. The token that follows –icon names

the file that contains the icon to be displayed.

3. The File Browser searches for the file, which must be in bitmap(1) format, in

directory $HOME/.bitmaps, or ccase–home–dir/config/ui/bitmaps, or the

directories specified by the environment variable BITMAP_PATH.

4. If a valid bitmap file is found, the File Browser displays it; otherwise, the

search for an icon continues with the next file type.

The name of an icon file must include a numeric extension, which need not be

specified in the icon file rule. The extension specifies how much screen space the

File Browser must allocate for the icon. Each bitmap supplied with Rational

ClearCase version control is stored in a file with a .40 suffix (for example, lib.40),

which indicates a 40x40 icon.

Chapter 15. Using element types to customize file element processing 239

This procedure causes the File Browser to display manual page source files with a

customized icon. All manual pages have file type manpage.

1. Add a rule to your personal magic file (in directory $HOME/.magic) that

includes manpage among the file types assigned to all manual page source

files:

manpage src_file text_file file: -name "*.[1-9]" ;

2. Add a rule to your personal icon file (in directory $HOME/.icon) that maps

manpage to a user-defined bitmap file:

manpage : -icon manual_page_icon ;

3. Create a manpage icon in your personal bitmaps directory ($HOME/.bitmaps)

by revising one of the standard icon bitmaps with the standard X bitmap

utility:

% mkdir $HOME/.bitmaps

% cd $HOME/.bitmaps

% cp $RATIONALHOME/config/ui/bitmaps/c.40 manual_page_icon.40

% bitmap manual_page_icon.40

4. Test your work by having the File Browser display a manual page source file.

240 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 16. Using Rational ClearCase throughout the

development cycle

The previous chapters (Chapter 11, “Defining project views,” on page 163 through

Chapter 15, “Using element types to customize file element processing,” on page

229) describe various aspects of managing a project with Rational ClearCase. This

chapter describes typical usage by a developer.

About using Rational ClearCase throughout the development cycle

It is helpful to understand one way in which you can use Rational ClearCase to

organize the work throughout a development cycle for a project. During a

development cycle, developers create a new release and maintain the previous

release.

You should understand concepts and methods to address typical organizational

needs. There are many other approaches that are supported. For example, instead

of using command-line tools that are described here, consider using graphic user

interface (GUI) tools such as the Merge Manager to accomplish similar goals.

Project overview

Release 2.0 development of the monet project includes the following kinds of

work:

v Patches. Several high-priority bug fixes to Release 1.0 are needed.

v Minor enhancements. Some commands need new options; some option names

need to be shortened (for example, –recursive becomes –r); some algorithms

need performance work.

v Major new features. A graphic user interface is required, as are many new

commands and internationalization support.

These three development efforts can proceed largely in parallel (see Figure 58), but

critical dependencies and milestones must be considered:

v Several Release 1.0 patch releases will ship before Release 2.0 is complete.

v New features take longer to complete than minor enhancements.

v Some new features depend on the minor enhancements.

© Copyright IBM Corp. 1992, 2006 241

The plan uses a baseline-plus-changes approach. Periodically, developers stop

writing new code, and spend some time integrating their work, building, and

testing. The result is a baseline: a stable, working version of the application. You can

integrate product enhancements incrementally and frequently. The more frequent

the baselines, the easier the tasks of merging work and testing the results.

After a baseline is produced, active development resumes; any new efforts begin

with the set of source versions that went into the baseline build.

You define a baseline by assigning the same version label (for example, R2_BL1 for

Release 2.0, Baseline 1) to all the versions that go into, or are produced by, the

baseline build.

The project team is divided into three smaller teams, each working on a different

development effort: the MAJ team (new features), the MIN team (minor

enhancements), and the FIX team (Release 1.0 bug fixes and patches). Some

developers may belong to multiple teams. These developers work in multiple

views, each configured for the respective team tasks.

Product Note: In the examples that follow, arguments that show multicomponent

VOB tags, such as /vobs/monet, do not apply to Rational

ClearCase LT on the UNIX system, which recognizes only

single-component VOB tags, such as /vobs_monet.

The development area for the monet project is shown here.

 /vobs/monet (project top-level directory)

src/ (sources)

include/ (include files)

lib/ (shared libraries)

At the beginning of Release 2.0 development, the most recent versions on the main

branch are labeled R1.0.

2.01.0 1

MAJ Team

MIN Team

FIX Team

2

1.0.21.0.1

= Release

= Baseline

= Freeze

= Merge

Figure 58. Project plan for Release 2.0 development

242 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Development strategy

This section describes the Rational ClearCase issues to be resolved before

development begins.

Project manager and Rational ClearCase administrator

In most development efforts, the project manager and the system administrator are

different people. The user name of the project manager is meister. The

administrator is the vobadm user, who creates and owns the monet and libpub

VOBs.

Use of branches

In general, different kinds of work are done on different branches. The Release 1.0

bug fixes, for example, are made on a separate branch to isolate this work from

new development. The FIX team can then create patch releases that do not include

any of the Release 2.0 enhancements or incompatibilities.

Because the MIN team will produce the first baseline release on its own, the

project manager gives the main branch to this team. The MAJ team will develop

new features on a subbranch, and will not be ready to integrate for a while; the

FIX team will fix Release 1.0 bugs on another subbranch and can integrate its

changes at any time.

Each new feature can be developed on its own subbranch, to better manage

integration and testing work. For simplicity, this chapter assumes that work for

new features is done on a single branch.

The project manager has created the first baseline from versions on the main

branches of their elements. But this is not a requirement; you can create a release

that uses versions on any branch, or combination of branches.

The evolution of a typical element during Release 2.0 development is shown in

Figure 59.

Chapter 16. Using Rational ClearCase throughout the development cycle 243

The evolution of the element proceeds in the following steps:

 1. Start minor and major enhancements, along with R1.0 bug fixing (all

branches).

 2. Freeze minor enhancements work (main branch).

 3. Merge bug fixes from Release 1.0.1 into minor enhancements (main).

 4. Create Baseline 1 release (main).

 5. Freeze major enhancements work (major).

 6. Merge Baseline 1 changes into major enhancements (major).

 7. Freeze minor enhancements work (main).

 8. Merge additional bugfixes into minor enhancements (main).

 9. Freeze major enhancements work (major).

10. Merge major enhancements work with minor enhancements work (main).

11. Create Baseline 2 release (main).

12. Begin Final testing (main).

merge

0

1

3

4

0

1

2

3

R1.0

main

major

R2_BL1

5

0

1

2

r1_fix

4

5

6

7

8

9

2

3

R2_BL2

R2.0

(R1.0.1)

4(R1.0.2) 6

merge

merge

merge

10

Figure 59. Development milestones: evolution of a typical element

244 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

13. Release 2.0 is done (main).

Creating project views

The MAJ team works on a branch named major and uses this config spec:

(1) element * CHECKEDOUT

(2) element * .../major/LATEST

(3) element * R1.0 –mkbranch major

(4) element * /main/LATEST –mkbranch major

The MIN team works on the main branch and uses the default config spec:

(1) element * CHECKEDOUT

(2) element * .../main/LATEST

The FIX team works on a branch named r1_fix and uses this config spec:

(1) element * CHECKEDOUT

(2) element * .../r1_fix/LATEST

(3) element * R1.0 –mkbranch r1_fix

(4) element * /main/LATEST –mkbranch r1_fix

For the MAJ and FIX teams, use of the auto-make-branch facility in Rule “3” on page

245 and Rule “4” on page 245 enforces consistent use of subbranches. It also

relieves developers of the task of creating branches explicitly and ensures that all

branches are created at the version labeled R1.0.

Creating branch types

The project manager creates the major and r1_fix branch types that are required

for the config specs in “Creating project views” on page 245:

cleartool mkbrtype –c "monet R2 major enhancements" \

major@/vobs/libpub major@/vobs/monet

Created branch type "major".

Created branch type "major".

cleartool mkbrtype –c "monet R1 bugfixes" r1_fix@/vobs/libpub

r1_fix@/vobs/monet

Created branch type "r1_fix".

Created branch type "r1_fix".

Tip: Because each VOB has its own set of branch types, the branch types must be

created separately in the monet VOB and the libpub VOB.

Creating standard config specs

To ensure that all developers in a team configure their views the same way, the

project manager creates files containing standard config specs:

v /public/config_specs/MAJ contains the MAJ team’s config spec.

v /public/config_specs/FIX contains the FIX team’s config spec.

These config spec files are stored in a VOB but made available in a standard

directory outside a VOB to ensure that all developers get the same version.

Creating, configuring, and registering views

Each developer creates a view under his or her home directory. For example,

developer arb enters these commands:

Chapter 16. Using Rational ClearCase throughout the development cycle 245

% mkdir $HOME/view_store

% cleartool mkview –tag arb_major $HOME/view_store/arb_major.vws

Created view.

Host-local path: phobos:export/home/arb/view_store/arb_major.vws

Global path: /net/phobos/export/home/arb/view_store/arb_major.vws

It has the following rights:

User : arb : rwx

Group: user : rwx

Other: : r-x

A new view has the default config spec. Thus, developers on the MAJ and FIX

teams must reconfigure their views, using the standard file for their team.

Developer arb edits her config spec with the cleartool edcs command, deletes the

existing lines, and adds the following line:

/public/config_specs/MAJ

If the project manager changes the standard file, arb must enter the command

cleartool setcs –current to pick up the changes.

Development begins

To begin the project, a developer sets a properly configured view, checks out one

or more elements, and starts work. For example, developer david on the MAJ team

enters these commands:

% cleartool setview david_major

% cd /vobs/monet/src

% cleartool checkout –nc opt.c prs.c

Created branch "major" from "opt.c" version "/main/6".

Checked out "opt.c" from version "/main/major/0".

Created branch "major" from "prs.c" version "/main/7".

Checked out "prs.c" from version "/main/major/0".

The auto-make-branch facility causes each element to be checked out on the major

branch (see Rule “4” on page 245 in the MAJ team’s config spec in “Creating

project views” on page 245). If a developer on the MIN team enters this command,

the elements are checked out on the main branch, with no conflict.

Rational ClearCase is fully compatible with standard development tools and

practices. Thus, developers use the editing, compilation, and debugging tools that

they prefer (including personal scripts and aliases) while working in their views.

Developers check in work periodically to make their work available to other team

members (that is, those whose views select the most recent version on the team’s

branch). This allows intra-team integration and testing to proceed throughout the

development period.

Techniques for isolating your work

Individual developers may need or prefer to isolate their work from the changes

made by other team members. To do so, they can use these techniques to configure

their views:

v Time rules. When someone checks in an incompatible change, a developer can

re-configure the view to select the versions at a point before those changes were

made.

v Private subbranches. A developer can create a private subbranch in one or more

elements (for example, /main/major/anne_wk). The config spec must be changed

to select versions on the /main/major/anne_wk branch instead of versions on the

/main/major branch.

246 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v Viewing only their own revisions. Developers can use a Rational ClearCase

query to configure a view that selects only their own revisions to the source tree.

Creating baseline 1

The MIN team has implemented and tested the first group of minor enhancements,

and the FIX team has produced a patch release, whose versions are labeled R1.0.1.

It is time to combine these efforts, to produce Baseline 1 of Release 2.0 (Figure 60).

Merging two branches

The project manager asks the MIN developers to merge the R1.0.1 changes from

the r1_fix branch to their own branch (main). All the changes can be merged by

using the findmerge command once. For example:

% cleartool findmerge /vobs/libpub /vobs/monet/src \

 –fversion .../r1_fix/LATEST –merge –graphical

The output from the findmerge command describes the versions that are merged.

Integration and test

After the merges are complete, the /main/LATEST versions of certain elements

represent the efforts of the MIN and FIX teams. Members of the MIN team now

compile and test the monet application to find and fix incompatibilities in the

work of both teams.

The developers on the MIN team integrate their changes in a single, shared view.

The project manager creates the view storage area in a location that is accessible

from all developer hosts:

% umask 2

% mkdir /netwide/public

% cleartool mkview –tag base1_vu /netwide/public/base1_vu.vws

Created view.

Host-local path: infinity:/netwide/public/base1_vu.vws

Global path: /net/infinity/netwide/public/base1_vu.vws.

It has the following rights:

User : meister : rwx

Group: mon : rwx

Other: : r-x

Because all integration work takes place on the main branch, there is no need to

change the configuration of the new view from the Rational ClearCase default.

MIN developers set this view (cleartool setview base1_vu) and coordinate builds

MIN Team

FIX Team

Release
1.0 Freeze

Release
1.0.1

Baseline
1

Figure 60. Creating baseline 1

Chapter 16. Using Rational ClearCase throughout the development cycle 247

and tests of the monet application. Because they are sharing a single view, the

developers are careful not to overwrite each other’s view-private files. Any new

versions that are created to fix inconsistencies (and other bugs) go onto the main

branch.

Labeling sources

The monet application minor enhancements and bug fixes are now integrated, and

a clean build has been performed in view base1_vu. To create the baseline, the

project manager assigns the same version label, R2_BL1, to the /main/LATEST

versions of all source elements. He begins by creating an appropriate label type:

% cleartool mklbtype –c "Release, Baseline 1" R2_BL1@/vobs/monet

R2_BL1@/vobs/libpub

Created label type "R2_BL1".

Created label type "R2_BL1".

He then locks the label type, preventing all developers (except himself) from using

it:

% cleartool lock –nusers meister lbtype:R2_BL1@/vobs/monet

lbtype:R2_BL1@/vobs/libpub

Locked label type "R2_BL1".

Locked label type "R2_BL1".

Before applying labels, he verifies that all elements are checked in on the main

branch (checkouts on other branches are still allowed):

% cleartool lscheckout –all /vobs/monet /vobs/libpub

No output from this command indicates that all elements for the monet project are

checked in. Now, the project manager attaches the R2_BL1 label to the currently

selected version (/main/LATEST) of every element in the two VOBs:

% cleartool mklabel –recurse R2_BL1 /vobs/monet /vobs/libpub

Created label "R2_BL1" on "/vobs/monet" version "/main/1".

Created label "R2_BL1" on "/vobs/monet/src" version "/main/3".

 <many more label messages>

Removing the integration view

The view registered as base1_vu is no longer needed, so the project manager

removes it:

% cleartool rmview –force –tag base1_vu

Merging ongoing development work

After Baseline 1 is created, the MAJ team merges the Baseline 1 changes into its

work (Figure 61). The team now has access to the minor enhancements it needs for

further development. Team members also have an early opportunity to determine

whether any of their changes are incompatible.

248 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Accordingly, the project manager declares a freeze of major enhancements

development. MAJ team members check in all elements and verify that the monet

application builds and runs, making small source changes as necessary. When all

such changes have been checked in, the team has a consistent set of

/main/major/LATEST versions.

Tip: Developers working on other major enhancements branches can merge at

other times, using the same merge procedures described here.

Preparing to merge

1. The project manager makes sure that no element is checked out on the major

branch:

% cleartool lscheckout –all /vobs/monet /vobs/libpub

Tip: Any MAJ team members who want to continue with nonmerge work can

create a subbranch at the “frozen” version (or work with a version that is

checked out as unreserved).

2. The project manager performs any required directory merges:

% cleartool setview major_vu

Any MAJ team view can be used.

% cleartool findmerge /vobs/monet /vobs/libpub –type d \

–fversion /main/LATEST –merge

Needs merge /vobs/monet/src [automatic to /main/major/3 from

/main/LATEST]

 .

 .

 .

Log has been written to “findmerge.log.04-Feb-04.09:58:25”.

The output log describes the findmerge actions.

3. After checking in the files, the project manager determines which elements

need to be merged:

% cleartool findmerge /vobs/monet /vobs/libpub –fversion /main/LATEST –print

 .

 .

 .

A ’findmerge’ log has been written to

"findmerge.log.04-Feb-04.10:01:23"

MAJ Team

MIN Team Baseline
1

Release
1.0

Freeze

Freeze

Figure 61. Updating major enhancements development

Chapter 16. Using Rational ClearCase throughout the development cycle 249

The output log describes the findmerge actions. This last findmerge log file is

in the form of a shell script: it contains a series of cleartool findmerge

commands, each of which performs the required merge for one element:

% cat findmerge.log.04-Feb-04.10:01:23

cleartool findmerge /vobs/monet/src/opt.c@@/main/major/1 -fver /main/LATEST –merge

cleartool findmerge /vobs/monet/src/prs.c@@/main/major/3 -fver /main/LATEST –merge

 .

 .

cleartool findmerge /vobs/libpub/src/dcanon.c@@/main/major/3 -fver /main/LATEST -merge

cleartool findmerge /vobs/libpub/src/getcwd.c@@/main/major/2 -fver /main/LATEST -merge

cleartool findmerge /vobs/libpub/src/lineseq.c@@/main/major/10 -fver /main/LATEST -merge

4. The project manager locks the major branch, allowing it to be used only by the

developers who are performing the merges:

cleartool lock –nusers meister,arb,david,sakai brtype:major@/vobs/monet \

brtype:major@/vobs/libpub

Locked branch type "major".

Locked branch type "major".

Merging work

Because the MAJ team is not contributing to a baseline soon, it is not necessary to

merge work (and test the results) in a shared view. MAJ developers can continue

working in their own views.

Periodically, the project manager sends an excerpt from the findmerge log to an

individual developer, who executes the commands and monitors the results. (The

developer can send the resulting log files back to the project manager, as

confirmation of the merge activity.)

A merged version of an element includes changes from three development efforts:

Release 1.0 bug fixing, minor enhancements, and new features (see Figure 62).

250 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The project manager verifies that no more merges are needed, by entering a

findmerge command with the –whynot option:

% cleartool findmerge /vobs/monet /vobs/libpub –fversion /main/LATEST –whynot –print

 .

 .

No merge "/vobs/monet/src" [/main/major/4 already merged from /main/3]

No merge "/vobs/monet/src/opt.c" [/main/major/2 already merged from

/main/12]

 .

 .

The merge period ends when the project manager removes the lock on the major

branch:

% cleartool unlock brtype:major@/vobs/monet brtype:major@/vobs/libpub

Unlocked branch type "major".

Unlocked branch type "major".

Creating Baseline 2

The MIN team is ready to freeze for Baseline 2, and the MAJ team will be soon

(see Figure 63).

Development
when BL1
is complete

Development
freeze

merge

0

1

3

4

0

1

2

3

R1.0

main

major

R2_BL1

5

0

1

2

r1_fix

4

5

2(R1.0.1)

6

merge

Figure 62. Merging Baseline 1 changes into the major branch

Chapter 16. Using Rational ClearCase throughout the development cycle 251

Baseline 2 integrates all three development efforts, and thus requires two sets of

merges:

v Bug fix changes from the most recent patch release (versions labeled R1.0.2)

must be merged to the main branch.

v New features must be merged from the major branch to the main branch. (This

is the opposite direction from the merges described in “Merging ongoing

development work” on page 248.)

Merges can be done from more than two directions, so both the bug fixes and the

new features can be merged to the main branch at the same time. In general,

though, it is easier to verify the results of two-way merges.

Merging from the r1_fix branch

The first set of merges is almost identical to those described in “Merging two

branches” on page 247.

Preparing to merge from the major branch

After the integration of the r1_fix branch is completed, the project manager

prepares to manage the merges from the major branch. These merges are

performed in a tightly controlled environment, because the Baseline 2 milestone is

approaching and the major branch is to be abandoned.

Tip: It is probably more realistic to build and verify the application, and then

apply version labels before proceeding to the next merge.

Baseline
2

Release
1.0.2

Freeze

Freeze

Figure 63. Baseline 2

252 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The project manager verifies that everything is checked in on both the main branch

and major branches:

% cleartool lscheckout –brtype main –recurse /vobs/monet /vobs/libpub

% cleartool lscheckout –brtype major –recurse /vobs/monet /vobs/libpub

%

No output from these commands indicates that no element is checked out on either

its main branch or its major branch.

Next, the project manager determines which elements require merges:

% cleartool setview minor_vu

Any MIN team view can be used.

% cleartool findmerge /vobs/monet /vobs/libpub –fversion .../major/LATEST –print

 .

 .

 .

A ’findmerge’ log has been written to

"findmerge.log.26-Feb-99.19:18:14"

All development on the major branch will stop after this baseline. Thus, the project

manager locks the major branch to all users, except those who are performing the

merges. Locking allows the merges to be recorded with a hyperlink of type Merge:

% cleartool lock –nusers arb,david brtype:major@/vobs/monet

brtype:major@/vobs/libpub

Locked branch type "major".

Locked branch type "major".

Because the main branch will be used for Baseline 2 integration by a small group

of developers, the project manager asked vobadm to lock the main branch to

everyone else:

% cleartool lock –nusers meister,arb,david,sakai \

brtype:main@/vobs/monet brtype:main@/vobs/libpub

Locked branch type "main".

Locked branch type "main".

To lock the branch, you must be the branch creator, element owner, VOB owner, or

root user (on the UNIX system) or a member of the ClearCase administrators group

(on the Windows system). See the lock reference page.

Merging from the major branch

Because the main branch is the destination of the merges, developers work in a

view with the default config spec. The situation is similar to the one described in

“Preparing to merge” on page 249. This time, the merges take place in the opposite

direction, from the major branch to the main branch. Accordingly, the findmerge

command is very similar:

% cleartool findmerge /vobs/monet /vobs/libpub –fversion /main/major/LATEST \

–merge –graphical

 .

 .

 .

A ’findmerge’ log has been written to

"findmerge.log.23-Mar-99.14:11:53"

After checkin, the version tree of a typical merged element appears as in Figure 64.

Chapter 16. Using Rational ClearCase throughout the development cycle 253

Decommissioning the major branch

After all data has been merged to the main branch, development on the major

branch will stop. The project manager enforces this policy by making the major

branch obsolete:

% cleartool lock –replace –obsolete brtype:major@/vobs/monet

brtype:major@/vobs/libpub

Locked branch type "major".

Locked branch type "major".

Integration and test

Structurally, the Baseline 2 integration-and-test phase is identical to the one for

Baseline 1 (see “Integration and test” on page 247). At the end of the integration

period, the project manager attaches version label R2_BL2 to the /main/LATEST

version of each element in the monet and libpub VOBs. (The Baseline 1 version

label was R2_BL1.)

Final validation: creating Release 2.0

Baseline 2 has been released internally, and further testing has found only minor

bugs. These bugs have been fixed by creating new versions on the main branch

(see Figure 65).

0

1

2

3

4

4

0

1

2

3

R2_BL1

R2_BL2 merge

main

major

5

merge
1R1.0.2

merge

Figure 64. Element structure after the pre-Baseline-2 merge

254 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Before the monet application is shipped to customers, it goes through a validation

phase:

v All editing, building, and testing is restricted to a single, shared view.

v All builds are performed from sources with a particular version label (R2.0).

v Only the project manager has permission to make changes involving that label.

v All labels must be moved by hand.

v Only high-priority bugs are fixed, using this procedure:

– The project manager authorizes a particular developer to fix the bug, by

granting her permission to create new versions (on the main branch).

– The developer’s checkin activity is tracked by a Rational ClearCase trigger.

– After the bug is fixed, the project manager moves the R2.0 version label to the

fixed version and revokes the developer’s permission to create new versions.

Labeling sources

In a view with the default config spec, the project manager creates the R2.0 label

type and locks it:

cleartool mklbtype –c "Release 2.0" R2.0@/vobs/monet R2.0@/vobs/libpub

Created label type "R2.0".

Created label type "R2.0".

cleartool lock –nusers meister lbtype:R2.0@/vobs/monet lbtype:R2.0@/vobs/libpub

Locked label type "R2.0".

Locked label type "R2.0".

The project manager labels the /main/LATEST versions throughout the entire monet

and libpub development trees:

cleartool mklabel –recurse R2.0 /vobs/monet /vobs/libpub

Many label messages are displayed. During the final test phase, the project

manager moves the label forward, using mklabel –replace, if any new versions are

created.

Restricting use of the main branch

At this point, use of the main branch is restricted to a few users: those who

performed the merges and integration leading up to Baseline 2 (see “Merging from

the major branch” on page 253). Now, the project manager asks vobadm to close

down the main branch to everyone except himself, meister:

% cleartool lock –replace –nusers meister brtype:main

Locked branch type "main".

The main branch is opened only for last-minute bug fixes (see “Fixing a final bug”

on page 256.)

Setting up the test view

The project manager creates a new shared view, r2_vu, that is configured with a

one-rule config spec:

Minor bugfixes Release
2.0

Baseline
2

Figure 65. Final test and release

Chapter 16. Using Rational ClearCase throughout the development cycle 255

% umask 2

% cleartool mkview –tag r2_vu /public/integrate_r2.vws

% cleartool edcs –tag r2_vu

This is the config spec:

element * R2.0

This config spec guarantees that only properly labeled versions are included in

final validation builds.

Setting up the trigger to monitor bug-fixing

The project manager places a trigger on all elements in the monet and libpub

VOBs; the trigger fires whenever a new version of any element is checked in. First,

he creates a script that sends mail (for an example script, see “Notify team

members of relevant changes” on page 183).

Then, he asks vobadm to create an all-element trigger type in the monet and

libpub VOBs, specifying the script as the trigger action:

% cleartool mktrtype –nc -element –all –postop checkin –brtype main \

–exec /public/scripts/notify_manager.sh \

r2_checkin@/vobs/monet r2_checkin@/vobs/libpub

Created trigger type "r2_checkin".

Created trigger type "r2_checkin".

Only the VOB owner or root user (on the UNIX system) or a member of the

Rational ClearCase administrators group (on the Windows system) can create

trigger types.

Fixing a final bug

This section demonstrates the final validation environment in action. Developer arb

discovers a serious bug and requests permission to fix it. The project manager

grants her permission to create new versions on the main branch, by having

vobadm enter this command.

% cleartool lock –replace –nusers arb,meister brtype:main

Locked branch type "main".

Developer arb fixes the bug in a view with the default config spec and tests the fix

there. This involves creating two new versions of element prs.c and one new

version of element opt.c. Each time arb uses the checkin command, the r2_checkin

trigger sends mail to the project manager. For example:

Subject: Checkin /vobs/monet/src/opt.c by arb

/vobs/monet/src/opt.c@@/main/9

Checked in by arb.

Comments:

fixed bug #459: made buffer larger

When regression tests verify that the bug has been fixed, the project manager

revokes arb’s permission to create new versions. Once again, the command is

executed by vobadm:

% cleartool lock –replace –nusers meister brtype:main

Locked branch type "main".

The project manager then moves the version labels to the new versions of prs.c

and opt.c, as indicated in the mail messages. For example:

% cleartool mklabel –replace R2.0 /vobs/monet/src/opt.c@@/main/9

Moved label "R2.0" on "prs.c" from version "/main/8" to "/main/9".

256 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Rebuilding from labels

After the labels have been moved, developers rebuild the monet application again,

to verify that a good build can be performed using only those versions labeled

R2.0.

Wrapping up

When the final build in the r2_vu view passes the final test, Release 2.0 of monet is

ready to ship. After the distribution medium has been created from derived objects

in the r2_vu view, the project manager asks the Rational ClearCase administrator

to clean up and prepare for the next release:

v The Rational ClearCase administrator deletes the all-element trigger type to

remove the checkin triggers from all elements:

cleartool rmtype trtype:r2_checkin@/vobs/monet

trtype:r2_checkin@/vobs/libpub

Removed trigger type "r2_checkin".

Removed trigger type "r2_checkin".

v The Rational ClearCase administrator reopens the main branch:

cleartool unlock brtype:main

Unlocked branch type "main".

Chapter 16. Using Rational ClearCase throughout the development cycle 257

258 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 4. Appendixes

© Copyright IBM Corp. 1992, 2006 259

260 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix A. Moving from view profiles to UCM

This appendix compares view profile features with UCM features and describes

how to move a project from view profiles to UCM.

View profiles and UCM

Product Note: View profiles are available only with Rational ClearCase on the

Windows system. Rational ClearCase LT does not support view

profiles.

A set of features called view profiles were included to automate much of the work

required to set up and maintain your team’s shared Rational ClearCase

configuration. The Unified Change Management (UCM) process provides a more

complete solution for organizing software development teams. If you currently use

view profiles, you may want to move to UCM.

Feature comparison

The features of view profiles and UCM are similar in a few ways and different in

many other ways.

Branches and streams

In UCM, the project and its integration stream take the place of the view profile.

Views attached to the integration stream are configured to select the project shared

integration branch, just as a view profile config spec selects a shared common

branch.

In view profiles, developers can work independently by setting up private

branches for development work. In UCM, team members join a project at which

time they create their own development work areas. A development work area

consists of a development stream and a development view.

Moving work among branches or streams

When working on a private branch in view profiles, there is no automated way to

incorporate changes from other developers onto the private branch. In UCM,

developers use the rebase operation to update their development work areas with

the latest work delivered by other developers to the integration stream and

incorporated into a baseline.

In view profiles, developers finish a private branch when they complete a task.

Finishing a private branch closes that branch and merges work to the integration

branch, where it is merged with other sources. In UCM, activities record the

versions that you create to complete a development task as change sets. The deliver

operation moves activities from the development stream to the integration stream

or a feature-specific development stream. Your development stream remains in

place after a deliver operation, and you can continue to work in it.

VOBs and components

View profiles contain a list of VOBs that hold project data. UCM projects organize

directory and file elements into components, and each stream keeps a list of

components.

© Copyright IBM Corp. 1992, 2006 261

Checkpoints and baselines

View profiles capture stable configurations of a project with checkpoints, a set of

labeled versions. UCM uses baselines, which capture a set of versions per

component.

Table 8 summarizes the key differences between view profiles and UCM features.

 Table 8. View profile features and their UCM counterparts

View profile construct UCM counterpart

View profile Project and integration stream

Integration branch Integration stream

Private branch Development stream

Set up private branch Create a development stream/join project

Finish private branch Deliver work to integration stream

Branch is closed when work is completed

and merged to integration branch.

Development stream is not closed after a

deliver operation.

No automated support for updating private

branch with work from other developers.

Rebase operation adds changes from the

integration stream to private work area.

Views are configured with information from

profiles.

Views are configured with information from

streams.

Moving view profile information to UCM

You may have to know how to move projects from view profiles to UCM.

Preparing your view profile project

Before moving work to UCM, finish all private branches. Work on private branches

cannot be moved directly to a UCM project. After work has been merged into the

integration branch, create a checkpoint that labels all versions to be migrated to the

UCM project.

Moving the view profile information

1. Convert each VOB of the view profile project into a component.

2. For each component, import the label used for the checkpoint created in Step 1

on page 262. By importing a label, you are creating a new baseline for each

component.

3. Create a UCM project, adding each baseline created in Step 2 on page 262.

Members of the project team can now join the project, creating their own

development streams and views.

For more information about creating a UCM project, see Chapter 6, “Setting up the

project,” on page 85.

262 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix B. Rational ClearCase integrations with Rational

ClearQuest

In Rational ClearCase, two integrations with Rational ClearQuest are supported.

This appendix provides information that you need to manage both integrations in

the same development environment.

Understanding the Rational ClearCase integrations with Rational

ClearQuest

There are two separate integrations with Rational ClearQuest:

v The base ClearCase integration with Rational ClearQuest

v The UCM integration with Rational ClearQuest

The integrations associate one or more Rational ClearQuest user database records

with one or more Rational ClearCase versions, allowing you to use features of both

Rational ClearCase and Rational ClearQuest. For information on setting up the

base ClearCase integration with Rational ClearQuest, see “Setting up the Rational

ClearQuest user database for base ClearCase” on page 196. Note that this

integration cannot be used with UCM projects.

For more information on the UCM integration with Rational ClearQuest, see

Chapter 5, “Setting up a Rational ClearQuest user database for UCM,” on page 75.

In general, you should use the base ClearCase integration with Rational

ClearQuest and the UCM integration with Rational ClearQuest separately, and

avoid using a common Rational ClearQuest user database. However, it is possible

for both integrations to use the same Rational ClearQuest user database. This can

be useful if you are moving a project to UCM and have a substantial amount of

information in a Rational ClearQuest user database that was created with the base

ClearCase integration with Rational ClearQuest. You may want the new work in

UCM to be reflected in new Rational ClearQuest records in the same Rational

ClearQuest user database.

You should be aware of the considerations in managing the coexistence of the base

ClearCase integration with Rational ClearQuest and the UCM integration with

Rational ClearQuest.

Managing coexisting integrations

When a Rational ClearQuest user database that had been integrated with Rational

ClearCase previously is configured for integration with UCM, the existing change

sets are preserved intact in the Rational ClearQuest user database, but cannot be

migrated to the UCM integration with Rational ClearQuest.

Change sets of existing records in the Rational ClearQuest user database are

preserved, and you can access them from a Rational ClearQuest client. To continue

work on a task in a project that has been migrated to UCM, create a new,

corresponding, UCM activity and continue work there.

See “Planning how to use the UCM integration with Rational ClearQuest” on page

57 for related information.

© Copyright IBM Corp. 1992, 2006 263

Schema usage with both integrations

A Rational ClearQuest schema can contain modifications from both the base

ClearCase integration with Rational ClearQuest and the UCM integration with

Rational ClearQuest. A record type in such a schema would include both the

Rational ClearCase package and the Unified Change Management package.

An individual record of that record type can store either Rational ClearCase or

UCM change set information, but not both.

Presentation

The form for a record type that uses both integrations includes two tabs to show

the change set information associated with each integration. The Unified Change

Management tab lists the change set for a UCM activity. The ClearCase tab shows

the change set associated with a Rational ClearQuest record.

264 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix C. Customizing Rational ClearCase Reports

This appendix explains how to customize Rational ClearCase Reports. Specifically,

it introduces the Rational ClearCase Reports Programming Interface and gives

examples of how you can customize the report procedures and the user interface.

Product Note: Rational ClearCase Reports is available only with the Windows

versions of Rational ClearCase and Rational ClearCase LT.

How Rational ClearCase Reports works

Rational ClearCase Reports consists of two parts:

v The report procedures, which you can modify

v The Rational ClearCase Reports applications (Report Builder and Report

Viewer), which you cannot modify

The report procedures are hooks into the applications; they implement all the

operations necessary to generate and view a specific report. The applications

collect user input, interpret it, and run the appropriate report procedure. At run

time, Rational ClearCase Reports executes as two applications: Report Builder and

Report Viewer. The Report Builder is used to select and define report parameters;

the Report Viewer is used to view the report output.

All report procedures require an interface specification. This specification

determines the user interface information presented to users in the Report Builder

and Report Viewer. When users select a folder, the Report Builder scans the

interface specification of each report in the associated subdirectory and places the

contents in a temporary buffer. When users select a specific report, Report Builder

extracts from this buffer the interface information associated with the report that is

displayed in the Report Builder and Report Viewer. After users provide the

required report parameters, the Report Builder generates the report and passes the

data to the Report Viewer.

The commands that the Report Builder uses include an -i option, which extracts

the interface specification from the report procedure. If the report procedure does

not include an interface specification or if the structure and contents of that

specification are not what the Report Builder expects, report processing stops.

For more information on the processing sequence between the Rational ClearCase

Reports applications and the report procedures, see “Run-Time processing

sequence for Reports programming interface” on page 266.

What you can customize in Rational ClearCase Reports

The Rational ClearCase programming interface enables you to customize four parts

of the Report Builder user interface and two parts of the Report Viewer. You can

customize by adding, changing, or removing information for the changeable areas

of the Report Builder:

v The name of the folders in the tree pane.

v The directory organization displayed in the tree pane.

v The report description.

© Copyright IBM Corp. 1992, 2006 265

v The report parameters

As with the Report Builder, you can customize the Report Viewer. Add, change, or

remove information for the changeable areas as follows:

v The position of a column heading can be moved, a column heading name can be

added, modified, or deleted and a default sort order can be added or removed

from any column heading.

v The commands on the pop-up menu.

For programming examples that demonstrate how you can make these

customizations, see “Report programming examples” on page 276.

Run-Time processing sequence for Reports programming

interface

Before you begin to customize report procedures, it is important to understand the

run-time processing flow for Report Builder and Report Viewer. The processing

sequence occurs in the following phases.

v In phase 1, the user opens one of the subfolders in the Reports folder.

The Report Builder processes the interface specification of all report procedures

associated with the reports in that subfolder and presents the description of each

report in the reports pane of the Report Builder. The parameters associated with

the first report listed appear in the parameters pane. This processing is done

with the command that uses the -i option.

v In phase 2, the user selects a report in the reports pane.

The Report Builder populates the parameters pane with the parameters required

for that report. When the user clicks a parameter, the associated parameter

chooser prompts the user to provide a value. When all parameters have values,

the user can run the report. (The Run Report button is not available until all

parameters have values.)

v In phase 3, the report is generated.

A command line, whose parameters are defined in the interface specification, is

passed to the Report Viewer, with the parameter values. The Report Viewer runs

the report procedure and uses either cleartool or the Rational ClearCase

Automation Library (CAL) interface to retrieve information from the VOB. The

report procedure returns the information to the Report Viewer, which sorts,

formats, and displays it. The right-click behavior for all rows in the report (as

defined in the interface specification) is now enabled, and the user can also

manipulate the report data.

Figure 66 illustrates this processing sequence.

266 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To execute these processing phases correctly, a report procedure must meet the

following requirements:

v The directory that contains the report procedure must be found at known

location. The Report Builder reads the \reports\scripts directory to determine

the report procedure file names. When a user clicks the associated directory

folder, Report Builder calls the associated report procedure.

v The report procedure must have a valid interface specification. If the expected

format is not present, the report does not run.

v The interface specification in the report procedure must use parameters and

choosers supplied by Rational ClearCase Reports. See Table 9 on page 271.

v The report procedure must support a command line interface that the Report

Viewer can use to pass user-defined parameter values to the report procedure.

Report Builder

Description 1
Description 2

Parameter 1
Parameter 2

Reports
Folder 1
Folder 2

Phase 1

Report Builder

Report 1
Report 2

Parameter 1
Parameter 2

Reports
Folder 1
Folder 2

Report Builder

Report 1
Report 2

Reports
Folder 1
Folder 2

Parameter 1
Parameter 2

Phase 2

Report Viewer
Column 1 Column 2

Row 1
Row 2 Command 1

Command 2
Command 3

Phase 3

Report
Builder
application

Report
Builder
application

Report
procedures
in Folder 2

Report
Viewer
application

Procedure
for Report 1

USER ACTIONS RUN-TIME PROCESSING

Figure 66. Run-time processing sequence

Appendix C. Customizing Rational ClearCase Reports 267

Configuring shared report directories

When Rational ClearCase is installed on the client, the files for Rational ClearCase

Reports are stored in ccase–home–dir\reports. Before you modify the contents of this

directory, create a copy of it in a shared location. You can then delete or rename

folders and add or modify report procedures.

To create the copy, do one of the following:

v Copy the files to a new directory.

v Place a copy of the files under source control and create a Rational ClearCase

view to serve as the shared location.

You must remove the .dll and .exe files from the customization directory. The

subdirectories for \scripts,\script_tools, and \scripts_rightclick must be present.

The \scripts directory becomes the root node Reports in the Report Builder tree

pane; you can modify this directory tree. Do not delete any files that are in

\script_tools and \scripts_rightclick. You may add your own folders, of course.

The help files that are used by the reports cannot be modified and are not included

in the \reports directory. The help file for Rational ClearCase Reports is located in

ccase–home–dir\bin\cc_reports.hlp.

Adding report procedures to source control

To place a copy of ccase–home–dir\reports under source control:

1. Copy all files to a temporary directory.

2. In the temporary directory, enter a command of this form:

clearfsimport -recurse source-name target-VOB-directory

3. Create a dynamic or snapshot view for the reports data that is now under

source control.

Setting the Report Builder to the customized directory

After you copy the installed files for Rational ClearCase Reports

fromccase–home–dir\reports to a shared directory location, you can set Report

Builder to use this location:

1. In the Report Builder window, click Report > Set Scripts Location to open the

Configure Reports Directory window.

2. In the window, do one of the following:

v Type the directory path for the customized directory in the field.

v Click ... and, in the Browse for scripts location window, navigate to and

select a directory location.

Tip: After changing the Rational ClearCase Reports user interface, you must

restart Report Builder to activate the changes.

Default directory structure for Rational ClearCase Reports

All files for Rational ClearCase Reports are stored in ccase–home–dir\reports. This is

the directory structure:

reports\

 ccreportbuilder.exe

 ccreportviewer.exe

 cctypechooser.dll

 ccpathchooser.dll

 scripts\

 ClearCase_Tools\

 Elements\

268 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Attributes\

 Branches\

 Labels\

 Triggers\

 UCM_Projects\

 UCM_Streams\

 Views\

 VOBs\

 scripts_rightclick\

 script_tools\

Populating the Report Builder tree pane

The Report Builder window contains the following panes:

v The tree pane (left).

v The reports pane (top-right).

v The parameter pane (bottom-right).

When the user clicks any folder in the tree pane, the Report Builder runs the

associated report procedures from the command line. The -i option in the

command line enables the Report Builder to use a discovery algorithm to collect

the user interface information for Report Builder.

The Report Builder accesses the \scripts subdirectory. Directories in the tree appear

as folders in the tree pane. Any files whose extensions match those listed below are

listed in the reports pane.

.exe Typically a Visual C++ application that uses Rational ClearCase

Automation Library (CAL) to extract data

.js JavaScript™, run under Windows Scripting Host (cscript.exe)

.pl Perl, executed under perl.exe from user’s PATH environment

variable, for example, ActiveState Perl

.prl ccperl

.vbs VBScript, run under Windows Scripting Host (cscript.exe)

 All other files are ignored. The file name extension of report procedures supplied

with Rational ClearCase Reports is .prl, which the Report Builder associates with

ccperl.exe.

At run time, the Report Builder displays all folder names, substituting a space for

the underscore and dropping the file name extension. There is one exception: the

root directory is always named Reports. This convention cannot be changed.

For example, you have the following on-disk directory tree:

scripts\

 Admin_Reports

 view_aging.prl

 all_views.prl

 UCM_Reports\

 lagging_streams.prl

 completed_acts.prl

The Report Builder displays text in the tree pane as the following folders:

\Reports

 Admin Reports\

 UCM Reports\

Appendix C. Customizing Rational ClearCase Reports 269

Report Procedure interface specifications

As the Report Builder finds report procedures in the customized directory, it

queries each report procedure for its interface specification. Report Builder starts a

separate process with CreateProcess(). A valid report procedure must implement

an interface specification and return formatted text to STDOUT that conforms to

this specification:

description : ["<text to display in description pane for this report>"]

id : <numeric help id>

helpfile : ["<full path to user-written help file for what’s this

report help>"]

parameters : [<parameter_spec_1>] [<parameter_spec_2>] ...

[<parameter_spec_N>]

rightclick : [<rightclick_spec_1>] [<rightclick_spec_2>] ...

[<rightclick_spec_N>]

fields : [<field_spec_1>] [<field_spec_2> ... [<field_spec_N>]

If a serious parsing error occurs in processing the interface specification, the report

does not appear in the reports pane. The helpfile specification is reserved for

future use and is not supported in this release. For information on troubleshooting

parsing errors, see “Troubleshooting customization” on page 292.

The examples in “Interface specification for All_Views.prl” through “Parameter

choosers” on page 274 show how the interface specification is defined in specific

report procedures.

Interface specification for All_Views.prl

The Report Builder uses this command to run All_Views.prl:

ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\Views\All_Views.prl" -i

This is the interface specification:

description : "All Views"

id : 2001

helpfile :

parameters :

rightclick : Properties_of_View(single)

fields : "View Tag"(view_tag, rightclick, initial_width 30, sort 1)

"View Owner"(user_dq)

The report interface attaches the Report Viewer to the View Tag and View Owner

fields; the right-click event in the Report Viewer window calls Properties

_of_View.prl, which is based on a data stream from the View Tag field.

Description specification

The description is the only required part of an interface specification. When only

description is defined, a report procedure can run other graphical user interfaces

(for example, clearprompt) or otherwise interact with the user. The reports in the

\ClearCase_Tools folder define description only.

Descriptions can contain anything other than the delimiter, a double quote (").

There is no maximum length for this definition, but long strings do not wrap in

the reports pane.

270 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Help files

Help files are supplied for the Report Builder user interface. The help files for

Rational ClearCase Reports are in ccase–home–dir\bin\cc_reports.hlp. You cannot

add an ID for your own report.

Parameters specification

When specifying parameters, you can use only those supplied with Rational

ClearCase Reports. Each parameter has an associated chooser control, parameter

text, and a help ID (see Table 9).

 Table 9. Parameters supplied with Rational ClearCase Reports

Parameter

Default text displayed in the

parameter pane Help ID Chooser Selection

PROJECTS Select projects in UCM Process

VOB

1 Path (UCM) Multiple

STREAMS Select streams in UCM Process

VOB

2 Path (UCM) Multiple

ACTIVITIES Select activities in UCM Process

VOB

3 Path (UCM) Multiple

PROJECT Select project in UCM Process

VOB

4 Path (UCM) Single

STREAM Select stream in UCM Process

VOB

5 Path (UCM) Single

ACTIVITY Select activity in UCM Process

VOB

6 Path (UCM) Single

ISTREAM Select Integration Stream in UCM

Process VOB

7 Path (UCM) Single

PVOB Select one Process VOB Tag 8 Path (file selection) Single

COMPONENT Type a single UCM component

object selector (no verification

performed)

9 Text Single

BASELEVEL Type a single UCM baseline object

selector (no verification

performed)

10 Text Single

ISTREAMS Select Integration Streams in UCM

Process VOB

11 Path (UCM) Multiple

PVOBS Select Process VOBs Tags 12 Path (file selection) Multiple

COMPONENTS Type a list of UCM components

object selectors (no verification

performed)

13 Text Multiple

BASELEVELS Type a list of UCM baselines

object selectors (no verification

performed)

14 Text Multiple

LOOKIN Select paths in view to report on 15 Path (file selection) Multiple

USER Associated with user (values are

non-domain-qualified)

17 Text Single

GROUP Associated with group (values are

non-domain-qualified)

18 Text Single

LABEL With label 19 Type Single

ATTRIBUTE With attribute 20 Type Single

Appendix C. Customizing Rational ClearCase Reports 271

Table 9. Parameters supplied with Rational ClearCase Reports (continued)

Parameter

Default text displayed in the

parameter pane Help ID Chooser Selection

ATTRIBUTE_VALUE With value for attribute 21 Text Single

TRIGGER With trigger 22 Type Single

BRANCH With branch 23 Type Single

ELTYPE With element type 24 Text Single

HLTYPE With hyperlink type 25 Type Single

CCTIME Since date/time 26 Date/time Single

BRANCHLEVELS With integer levels of branching 27 Text Single

FILE_NAME With filename 28 Text Single

PATH Enter path 29 Text Single

STRING With string 30 Text Single

INTEGER Enter integer 31 Text Single

REGULAR_ EXPRESSION Enter regular expression 32 Text Single

When you use one of the parameters that is listed in Table 9, naming it is all that is

required. For example, this is the parameters specification for the Elements

Changed Between Two Labels report:

parameters : LOOKIN LABEL LABEL

The order of parameters is important. They are displayed in the parameter pane in

the order of the specification. (Each parameter appears as a link. When users click

the link, they are prompted to enter a parameter value.) At run time, the Report

Viewer calls the report procedure, which must handle the parameter values in the

same order as defined in the specification.

The parameters in Table 9 that are associated with the Type Chooser must also

include the LOOKIN parameter in the interface specification. The LOOKIN

parameter must have a value before any values for other parameters that use the

Type Chooser can be specified. The paths that are the values for the LOOKIN

parameter are used to build the set of VOBs that types can be read from. At run

time, if a user attempts to set a type parameter in reverse order, the Report Builder

displays this error message:

Before this parameter can be set, you must first set a value for the

“Select pathnames in view to report on” parameter.

Rightclick specification

The rightclick specification is a list of commands available on the pop-up menu in

the Report Viewer. All right-click events are supported by a list of scripts in the

\scripts_rightclick directory. This specification allows you to control the text on the

pop-up menu. At run time, underscores in these text strings are replaced by

spaces.

rightclick : properties_of_view delete_view

By default, the commands are valid for both single and multiple selections of result

records in the Report Viewer. This behavior can be controlled by using the single

modifier:

rightclick : properties_of_view(single) delete_view(single)

272 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

A special string, sep, allows visual separators to group commands. At run time,

these commands appear on the pop-up menu in the order specified.

Fields specification

The fields specification defines the names of the field headings and a number of

modifiers to describe the results a report procedure returns to the Report Viewer.

Table 10 describes the supported modifiers.

 Table 10. Fields modifiers

Modifier Description

sort N Optional. Specifies the sort order for returned records. If specified, this

modifier must be a sequence of integers that begin with 1. If no sort

specification is made, the records remain in the same order as returned

from the report procedure.

Inital_width N Optional. Overrides the default width for the field.

<field_type> Required.

hidden Optional. Prevents display of values for this field in the Report Viewer.

If this modifier is used, there is usually an associated sort N modifier

for the field.

rightclick Optional. The field value stream that is sent where any right-click

action occurs in the Report Viewer. Only one field can be designated as

the rightclick field.

For example, the following fields specification describes a single field with the

minimum specification allowed. The field_type modifier is required.

fields: "view tag"(view_tag)

In this example, the fields specification defines two fields, view tag and last mod

time, with all the allowable modifiers:

fields: "view tag"(view_tag, rightclick, initial_width 10) "last mod

time"(time_t, hidden, sort 1)

field_type conventions

Table 11 lists the names for field_types and the kind of data represented. Use these

definitions in your own report procedures wherever possible; but you can use your

own definitions.

 Table 11. Field type supplied with Rational ClearCase Reports

Field name Data description Example

project UCM Project headline

name

V4.1

project_objsel UCM project object

selector

Project:v4.1@\projects

stream UCM Stream headline

name

George_v4.1

stream_objsel UCM Stream object

selector

George_v4.1@\projects

activity UCM Activity headline

name

My activity

activity_objsel UCM Activity object

selector

Activity:my_act@\projects

Appendix C. Customizing Rational ClearCase Reports 273

Table 11. Field type supplied with Rational ClearCase Reports (continued)

Field name Data description Example

view_tag View-tag such as returned

by lsview

main_latest_view

time_t Integer ticks since

1/1/1970

946934277

cctime Readable time, format is

%dfmt_ccase

20-Dec-99.16:01:12

User User name georgem

User_dq Domain-qualified user

name

rational\georgem

string Random text hello world

Host Host name georgemnt

Hpath Local machine path to

view/VOB directory

D:\ClearCase_Storage\views\jet

View_sttrs View attributes snapshot, ucmview

Element_xpn Full path to element

ending in @@

S:\frontpage\accts\web\photo.htm@@

Element_pn Full path to element

without @@

S:\frontpage\accts\web\photo.htm

Version_pn Version specifier, after @@ \main\v4.0.bl5_main\2

label Label instance name V4.0

Integer Integer number 5

Yes_no yes or no enumerated

string

Yes

Branch_xpn Full path to branch S:\frontpage\accts\web\photo.htm@@\main

version_xpn Full path to version S:\frontpage\accts\web\photo.htm@@\main\3

branch Branch name main

Attribute Attribute name normalize_html

Objsel Object selector VOB:\my_vob

Trigger Trigger name post_ci

Eltype Element type text_file

Vob_tag VOB Tag \projects

Depending on the column width that is required to display for a user-defined

field_type, the fields specification in a report procedure may need to adjust the

display column size with the Inital_width N modifier.

Parameter choosers

When a user opens a folder in the Report Builder tree pane, the reports pane is

populated with the list of descriptions that the Report Builder discovered in the

interface specification. When the user selects a report, the associated parameters

are loaded in the Report Builder. Each parameter in the interface specification has

associated parameter text, a help ID, and a chooser. All parameters have an

associated chooser (Table 9).

These choosers are supplied with Rational ClearCase Reports:

274 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

v Path Chooser

v UCM Targets Chooser

v Types Chooser

v Date/Time Chooser

v Text Chooser

For user information, click Help in any chooser window.

Path chooser

The Path Chooser is associated with the LOOKIN parameter. It presents a list of

view paths for users to select, and then sends the selected paths to the report

procedure. It is also used for the PVOB and PVOBS parameters to choose the

VOB tag of a UCM project VOB.

UCM targets chooser

The UCM Targets Chooser is associated with the PROJECT, PROJECTS,

STREAM, STREAMS, ACTIVITY, ACTIVITIES, ISTREAM, and ISTREAMS

parameters and allows you to select UCM objects.

Type chooser

The Type Chooser presents values for the BRANCH, ATTRIBUTE, LABEL,

HYPERLINK, and TRIGGER parameters. All parameters that the Type Chooser

supports require an initial value LOOKIN parameter.

Date/time chooser

The Date/Time Chooser is used to select date/time values for the CCTIME

parameter.

Text chooser

The Text Chooser presents values for these parameters: COMPONENT,

COMPONENTS, BASELINE, BASELINES, USER, GROUP,

ATTRIBUTE_VALUE, ELTYPE, BRANCHLEVELS, FILE_NAME, PATH, STRING,

INTEGER, and REGULAR_EXPRESSION.

Data typed into the Text Chooser is not validated or parsed in any way by the

Report Builder or Report Viewer. The report procedure that accepts the parameter

value must perform any validation required.

For most parameters, the text above the field is Enter value for user. For

parameters that require the name of a baseline, a component, or an element type,

the text changes to reflect the parameter. For example: Enter value for baseline.

BASELINE baseline:<bl>@ \<pvob>

COMPONENT

component:<comp>@\<pvob>

ELTYPE <text_file>

Viewing the report

When all required parameters have values, clicking Run Report opens the Report

Viewer window. The Report Builder creates a command line to pass the

user-defined parameters, in the order defined by interface specification. For

example, if a report procedure asks for parameters LOOKIN LABEL, the Report

Viewer passes these values as follows:

ccperl elements_with_label.prl %LOOKIN=’s:\frontpage\acctst’;%LABEL=V4.0;

Appendix C. Customizing Rational ClearCase Reports 275

The Report Viewer creates a process to run the report procedure using ccperl.exe

for .prl, perl for .pl, cscript.exe for .js and .vbs, and default activation for .exe. The

report procedure returns results to STDOUT. The results are separated by

semicolons, in the same order, number, and type specified in the fields definition

in the interface specification.

When the report procedure has collected all its data, it exits. The report procedure

must return records to STDOUT in the most efficient manner possible; the Report

Viewer sorts the results and formats them for display. At run time, users can

change the default sorting order by clicking the column headings in the Report

Viewer. Simple text sorting is used for all fields except those whose field_type is

time_t, integer, or cctime. For these three fields only, Report Viewer uses numeric

sorting.

Saving report data

Clicking Save As in the Report Viewer window opens a standard file selection

window to prompt the user to save the results in one of the following output

formats:

.CSV Comma-separated, for import into Access or Excel

.HTML For viewing in a Web browser

.XML For viewing in Internet Explorer 5 using XSL style sheets

 Saving the file is performed by the save_results.prl script in \script_tools. This

script supports two switches, -html and -csv, and the header, followed by

semicolon-separated data rows. This script also needs a path value for the -out

option, where path is the value that the Report Viewer passes from the Path

Chooser.

XML output is supported directly by the Report Viewer. You can re-implement the

.CSV and .HTML output by modifying save_result.prl. You can also define

additional XSL style sheets that can be referred to in XML output. Start with the

style sheet supplied with Rational ClearCase Reports (\script_tools\table.xsl) to

create customized XSL files.

Report programming examples

All report procedures supplied with Rational ClearCase Reports are written in

ccperl. The programming examples presented in this section are modifications of

these report procedures. Report procedures can be written in many other scripts

and programming languages; report procedures that use other programming

languages are available in the T0046 package that you can obtain from the Rational

ClearCase Customer Web site at IBM Rational Support (see “Obtaining the T0046

package” on page 293). The following programming examples are presented in this

section:

v Example 1: Adding a new column to the report for Versions_byDate.prl.

v Example 2: Changing the directory organization and report description,

modifying the version path to a use different field name, and adding an element

type column to report output for Elements_with_New_Versions_Since_Date.prl.

v Example 3: Changing the report description, parameter types, and report output

for Elements_Created_by_User.prl.

v Example 4: Changing the order of commands and adding a command to the

pop-up menu for Element_with_Labels.prl.

276 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

https://www6.software.ibm.com/reg/rational/rational-i

v Example 5: Adding a user-defined command to the pop-up menu for

Element_with_Branches.prl.

In the source code listings that accompany each example, the string ###

customization change marks the changes to the original report that accomplish the

task.

Example 1: Adding a column to report output

The Versions by Date report lists all versions that exist for the path that the user

specified. This report includes the following columns:

v Version Path

v Version Creation Time

The change to this report adds a column that lists the user name associated with

each version. The report procedure is located in

ccase–home–dir\Reports\Scripts\Elements\Versions_by_Date.prl.

Processing logic

The processing logic of Versions_by_Date.prl is as follows:

1. The LOOKIN parameter, which is the sole parameter for this function, is

received in a string of this form:

LOOKIN = "<path1> [<path2> ...]"

This parameter specifies the list of paths with which the cleartool find

command is to be invoked.

2. When the routine is invoked, it extracts the paths from the LOOKIN string and

passes them to the check_lookin() routine (located in common_script.prl).

3. The routine check_lookin() then puts the paths into the global variable

$ctfind_paths and encloses each path in double quotes; it also performs simple

validations on the paths received.

4. The report procedure calls cleartool lshistory, passing $ctfind_paths as the

paths parameter, and with a -fmt parameter to return the necessary

information.

5. The report procedure executes a print statement with parameters (that is, the

items to print) of the same number and order as the list passed during interface

specification processing. The Report Builder has the information required to set

up the column headings; the report procedure must conform to this

specification to print its output.

Interface specification

This is the existing interface specification for Versions_by_Date.prl:

if (/^-i/) {

 print "description : ’Versions by Date’\n";

 print "id : 2018\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN ";

 print "\n";

 print_version_rightclick();

 print "fields : ";

 print "\"Version Path\”(version_xpn, rightclick, sort 2) ";

 print "\"Version Creation Time\"(cctime) ";

 print "\"Version Creation Time\"(time_t, sort 1, hidden) ";

 print "\n";

 exit(0);

}

Appendix C. Customizing Rational ClearCase Reports 277

Changes required

To add an additional column of report output:

1. Add a properly coded print statement to the interface specification that the

Report Builder can pass to the Report Viewer.

2. Add a %Fu; to the -fmt parameter in the cleartool lshist call to get this

information from the Rational ClearCase configuration.

3. Properly extract the user information into some variable after the cleartool

lshist call returns its output, so that it can be printed.

4. Print the user variable in the same order as it appeared in the interface

specification so that it appears under the correct column heading.

Modified report procedure

Here is the modified version of Versions_by_Date.prl. This report procedure is

example1.prl in theT0046 package, which is available at IBM Rational Support (see

“Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};

$ct = ""; if ($ct) {;};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};

$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};

$ctfind_paths = ""; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};

$debug = "no"; if ($debug) {;};

sub do_exit {

 $err = join(" ", @_);

 if ("$err" != "") {

 print STDERR "$err\n";

 }

 sleep(2);

 if ("$err" != "") {

 exit(1);

 } else {

 exit(0);

 }

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error

opening include file ’$common_dir\\common.prl’");

$buf = "";

while(<INCLUDE>) {

 $buf = $buf . $_;

}

close(INCLUDE);

eval $buf || do_exit("error on eval of include file

’$common_dir\\common.prl’");

my $args = $ARGV[0];

$args =~ s/%/ /g;

@args = split(";", $args);

$required_args = 0;

foreach(@args) {

 s/^[]+//;

 s/[]+$//;

 validate_arg_length($_);

 if (/^-i/) {

 print "description : ’Versions by Date’\n";

 print "id : 2018\n";

278 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

https://www6.software.ibm.com/reg/rational/rational-i

print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN ";

 print "\n";

 print_version_rightclick();

 print "fields : ";

 print "\"Version Path\"(version_xpn, rightclick, sort 2) ";

 print "\"Version Creation Time\"(cctime) ";

 print "\"Version Creation Time\"(time_t, sort 1, hidden) ";

customization change *** added following line

 print "\"User’(user) ";

 print "\n";

 exit(0);

}

if (/^LOOKIN[]*=[]*(’.*’)/) {

 check_lookin($1);

 $required_args++;

 next;

}

print STDERR "unrecognized argument: $_\n";

print STDERR " ccperl $0 -i\n";

print STDERR " for script’s interface.\n";

do_exit("\n");

}

if ($required_args != 1) {

 print STDERR "usage: not all required arguments specified.\n";

 print STDERR " ccperl $0 -i\n";

 print STDERR " for script’s interface.\n";

 do_exit("\n");

}

$ENV{"d;"} = "äd;ä";

open(CTHIST, "cleartool lshist -fmt ’%d;%e;%n\\n’ -recurse -nco

$ctfind_paths |");

while(<CTHIST>) {

 chomp;

 if (/create directory version/ || /create version/) {

 ($date, $event, $xpn) = split /;/, $_, 3;

 if ($date) {;}

 if ($event) {;}

 if ($xpn) {;}

 $timet = time_to_ticks($date);

customization change *** added following line

 $user = ‘cleartool desc -fmt ’%Fu’ ’$xpn’‘;

customization change *** added ";$user" to following line

 print "$xpn;$date;$timet;$user\n";

 }

}

do_exit();

Example 2: changing directory organization, description, and

output

The Elements with New Versions Since Date report lists all new versions for the

path and since the date and time specified by the user. This report includes the

following columns:

v Element Path

v Version Path

v Version Creation Time

The changes to the report procedure do the following:

v Display in the Report Builder tree pane a new directory named

ccase–home–dir\Reports\Scripts\Elements\New_Versions directory.

Appendix C. Customizing Rational ClearCase Reports 279

v Display a new report description: Types of Elements with New Versions Since

Date.

v Display the version path information in the version_xpn field in a different

format.

v Add a column in the report output to display a new column for Element Type.

The report procedure is located in:

ccase–home–dir\Reports\Scripts\Elements\Elements_with_New_Versions_Since_Date.pr

Processing logic

The processing logic of Elements_with_New_Versions_Since_Date.prl is as follows:

1. When the Report Builder processes the interface specification, the report

procedure yields two parameters:

LOOKIN

CCTIME

The mechanics of the LOOKIN parameter are described in “Example 1: Adding

a column to report output” on page 277. When the report procedure receives

CCTIME, it is a string of this form:

CCTIME = "time"

This parameter specifies the times that the cleartool find command uses.

2. When the report procedure is invoked by the Report Viewer using a fully

qualified command line, it extracts the values from the CCTIME string and

passes them to the chooser_time_to_cctime() subroutine (located in

common.prl). This routine converts the string to the correct format (for passing

to cleartool) and returns it.

3. The report procedure opens a pipe from a cleartool find -print command, with

the converted cctime value passed in as a created_since(<cctime>) string. The

value created_since is a query_language(1) predicate, which is frequently used

in conjunction with the find command.

4. As the values from the cleartool find command are returned, the report

procedure calls cleartool describe on the output to get the version-creation

time. The routine calls the time_to_ticks() routine (in common.prl) to get the

time equivalent in ticks.

5. The report procedure gets the path and version ID from the cleartool find

output, splitting it on the value of the $CLEARCASE_XN_SFX extended

naming symbol for the host. Finally, the report procedure prints the information

in the same order as defined in the interface specification.

Interface specification

This is the existing interface specification for

Elements_with_New_Versions_Since_Date.prl:

if (/^-i/) {

 print "description : ’Elements with New Versions Since Date’\n";

 print "id : 2017\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN CCTIME";

 print "\n";

 print_element_rightclick();

 print "fields : ";

 print "\"Element Path\"(element_pn, sort 2, rightclick) ";

 print "\"Version Path\"(version_pn) ";

 print "\"Version Creation Time\"(cctime) ";

280 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

print "\"Version Creation Time\"(time_t, hidden, sort 1) ";

 print "\n";

 exit(0);

}

Changes required

To change the directory organization and report description, to modify the version

path to use a different field name, and to add an element type column to the

report output:

1. Create a new folder, New_Versions, and move the report procedure there.

2. Add a properly coded print statement to the interface specification that does

the following:

v Specifies how to display the report description information in the Report

Builder

v Specifies how to display the report in the Report Viewer
3. Add additional processing to the cleartool find output as required to get the

desired information for element type.

4. Properly extract the new information for element type into a variable.

5. Print the new information in the proper position so that it appears under the

correct column heading.

Modified report procedure

Here is the modified version of Elements_with_New_Versions_Since_Date.prl. This

report procedure is example2.prl in theT0046 package, which is available at IBM

Rational Support (see “Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};

$ct = ""; if ($ct) {;};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};

$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};

$ctfind_paths = ""; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};

$debug = "no"; if ($debug) {;};

sub do_exit {

 $err = join(" ", @_);

 if ("$err" != "") {

 print STDERR "$err\n";

 }

 sleep(2);

 if ("$err" != "") {

 exit(1);

 } else {

exit(0);

}

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error

opening include file ’$common_dir\\common.prl’");

$buf = "";

while(<INCLUDE>) {

 $buf = $buf . $_;

}

close(INCLUDE);

eval $buf || do_exit("error on eval of include file

’$common_dir\\common.prl’");

my $args = $ARGV[0];

Appendix C. Customizing Rational ClearCase Reports 281

https://www6.software.ibm.com/reg/rational/rational-i
https://www6.software.ibm.com/reg/rational/rational-i

$args =~ s/%/ /g;

@args = split(";", $args);

my $cctime = "";

$required_args = 0;

foreach(@args) {

 s/^[]+//;

 s/[]+$//;

 validate_arg_length($_);

 if (/^-i/) {

customization change *** changed following line

 print "description : ’Types of Elements with New Versions Since

 Date’\n";

 print "id : 2017\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN CCTIME";

 print "\n";

 print_element_rightclick();

 print "fields : ";

 print "\"Element Path\"(element_pn, sort 2, rightclick) ";

customization change *** changed following line

 print "\"Version Path\"(version_xpn) ";

 print "\"Version Creation Time\"(cctime) ";

 print "\"Version Creation Time\"(time_t, hidden, sort 1) ";

customization change *** added following line

 print "\"Element Type\"(eltype) ";

 print "\n";

 exit(0);

}

 if (/^LOOKIN[]*=[]*(’.*’)/) {

 check_lookin($1);

 $required_args++;

 next;

 }

 if (/^CCTIME[]*=[]*’*([^’]*)’*/) {

 $cctime = chooser_time_to_cctime($1);

 $required_args++;

 next;

 }

 print STDERR "unrecognized argument: $_\n";

 print STDERR " ccperl $0 -i\n";

 print STDERR " for script’s interface.\n";

 do_exit("\n");

}

if ($required_args != 2) {

 print STDERR "usage: not all required arguments specified.\n";

 print STDERR " ccperl $0 -i\n";

 print STDERR " for script’s interface.\n";

 do_exit("\n");

}

open(CTFIND, "cleartool find $ctfind_paths -version

’created_since($cctime)’ -print |");

while(<CTFIND>) {

 chomp;

 if (/CHECKEDOUT/) {next;}

 $vertime = ‘cleartool desc -fmt ’%d’ ’$_’‘;

customization change *** added following line

 $eltype = ‘cleartool desc -fmt ’%[type]p’ ’$_’‘;

 $vertime_t = time_to_ticks($vertime);

 ($path, $verid) = split $CLEARCASE_XN_SFX, $_, 2;

customization change *** changed following line

 print "$_;$verid;$vertime;$vertime_t;$eltype\n";

 #print "$path;$verid;$vertime;$vertime_t\n";

}

do_exit();

282 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Example 3: changing description, parameter types, and output

The Elements Created by User report lists all elements created by the user-defined

user name. This report includes the following columns:

v Element Path

v Creating User

The changes to this report do the following:

v Display a new report description: Elements with Group.

v Remove the existing user parameter and add a new parameters for group.

v Compare the group associated with an element and the group specified in a

user-defined group parameter.

v Add a column in the report output for Group and Yes/No. The Yes/No column

will reflect the result of the comparing whether the group associated with each

element is the same as the value of the user-defined group parameter.

The script is located in

ccase–home–dir\Reports\Scripts\Elements\Elements_Created_by_User.prl.

Processing logic

The processing logic of Elements_Created_by_User.prl is as follows:

1. When the Report Builder processes the interface specification, the report

procedure yields two parameters:

LOOKIN

USER

The mechanics of the LOOKIN parameter are described in “Example 1: Adding a

column to report output” on page 277. The report procedure receives USER as a

string of this form:

USER= "user-name"

This parameter specifies the user name that the cleartool subcommand uses.

2. The USER string is extracted and stored as $ccuser. It is then passed to the

created_by($ccuser).

3. The created_by ($ccuser) query language primitive filters the paths specified to

cleartool find and returns only those that match the predicate, in this case,

those created by the user by setting a parameter value for USER.

4. The user variable is printed in the same order specified in the interface

specification so that it appears under the correct column heading.

Interface specification

This is the existing interface specification for Elements_Created_by_User.prl:

if (/^-i/) {

 print "description : ’Elements Created by User’\n";

 print "id : 2016\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN USER";

 print "\n";

 print_element_rightclick();

 print "fields : ";

 print "\"Element Path\"(element_xpn, sort 2, rightclick) ";

 print "\"Creating User\"(user, sort 1) ";

 print "\n";

 exit(0);

}

Appendix C. Customizing Rational ClearCase Reports 283

Changes required

To remove the user parameter, to add parameters for group and date/time, and to

adjust the report output for group and date/time information:

1. Change the interface specification of the report procedure to correspond to

required interface changes.

2. Change the logic in the report procedure to handle data requests for group

information; add a %Gu; to the -fmt parameter in thecleartool describe call to

get group information from the Rational ClearCase configuration.

3. Properly extract the group information into a variable after the cleartool

describe call returns its output, so that it can be printed.

4. Determine whether the element group is the same group parameter value

entered by the user and print the result of this comparison as a column

heading.

5. Print the group variables in the order specified in the interface specification so

that they appear under the correct column heading.

Modified report procedure

Here is the modified version of Elements_Created_by_User.prl. This report

procedure is example3.prl in theT0046 package, which is available at IBM Rational

Support (see “Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};

$ct = ""; if ($ct) {;};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};

$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};

$ctfind_paths = ""; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};

$debug = "no"; if ($debug) {;};

sub do_exit {

 $err = join(" ", @_);

 if ("$err" != "") {

 print STDERR "$err\n";

 }

 sleep(2);

 if ("$err" != "") {

 exit(1);

 } else {

 exit(0);

 }

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error

opening include file ’$common_dir\\common.prl’");

$buf = "";

while(<INCLUDE>) {

 $buf = $buf . $_;

}

close(INCLUDE);

eval $buf || do_exit("error on eval of include file

’$common_dir\\common.prl’");

my $args = $ARGV[0];

$args =~ s/%/ /g;

@args = split(";", $args);

my $ccuser = "";

$required_args = 0;

foreach(@args) {

284 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

https://www6.software.ibm.com/reg/rational/rational-i
https://www6.software.ibm.com/reg/rational/rational-i

s/^[]+//;

 s/[]+$//;

 validate_arg_length($_);

 if (/^-i/) {

customization change *** changed following line

 print "description : ’Elements With Group’\n";

 print "id : 2016\n";

 print "helpfile :\n";

 print "parameters : ";

customization change *** changed following line

 print "LOOKIN GROUP";

 print "\n";

 print_element_rightclick();

 print "fields : ";

 print "\"Element Path\"(element_xpn, sort 2, rightclick) ";

customization change *** added following 2 lines

 print "\"Element’s Group\"(group, sort 1) ";

 print "\"Same\"(yes_no) ";

customization change *** deleted following line

 #print "\"Creating User\"(user, sort 1) ";

 print "\n";

 exit(0);

}

if (/^LOOKIN[]*=[]*(’.*’)/) {

 check_lookin($1);

 $required_args++;

 next;

}

customization change *** deleted following 2 lines

 #if (/^USER[]*=[\t]*\"*([^\"]*)\"*/) {

 #$ccuser = $1;

customization change *** added following 2 lines

if (/^GROUP[]*=[\t]*\"*([^\"]*)\"*/) {

 $ccgroup = $1;

 $required_args++;

customization change *** deleted following line

 #validate_user($ccuser);

 next;

}

print STDERR "unrecognized argument: $_\n";

print STDERR " ccperl $0 -i\n";

print STDERR " for script’s interface.\n";

do_exit("\n");

}

if ($required_args != 2) {

 print STDERR "usage: not all required arguments specified.\n";

 print STDERR " ccperl $0 -i\n";

 print STDERR " for script’s interface.\n";

 do_exit("\n");

}

customization change *** deleted following 3 lines

#if ($ccuser =~ /[]+/) {

do_clearprompt("cleartool find does not allow spaces in user names;

cannot proceed.");

#}

customization change *** changed following line

open(CTFIND, "cleartool find $ctfind_paths -nxname -print |");

while(<CTFIND>) {

 chomp;

customization change *** added following 6 lines

 $grp = ‘cleartool desc -fmt ’%Gu’ ’$_’‘;

 if ($grp eq $ccgroup) {

 $same = "yes";

 } else {

 $same = "no";

Appendix C. Customizing Rational ClearCase Reports 285

}

customization change *** changed following line

 print "$_;$grp;$same\n";

 #print "$_;$ccuser;\n";

}

do_exit();

Example 4: changing the pop-up menu for right-click handling

The Elements with Labels report lists all elements with labels for a user-defined

path. This report includes one column:

v Element Path

The change to this report adds the Compare with Previous Version command to

the pop-up menu. Currently, these commands appear on the pop-up menu:

v Properties of Element

v Version Tree

v History

The report procedure is located in

ccase–home–dir\Reports\Scripts\Elements\Labels\Elements_with_Labels.prl.

Interface specification

This is the existing interface specification for Elements_with_Labels.prl:

if (/^-i/) {

 print "description : ";

 print "’Elements with Labels’";

 print "\n";

 print "id : 2003\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN ";

 print "LABEL ";

 print "\n";

 print_element_rightclick();

 print "fields : ";

 print "\"Element Path\"(element_pn, rightclick, sort 1)";

 print "\n";

 exit(0);

}

Note the call to print_element_rightclick() in the middle of the interface

specification. The code for this routine is located in \script_tools\common.prl:

sub print_element_rightclick {

 print "rightclick : ";

 print "Properties_of_Element(single) ";

 print "sep ";

 print "Version_Tree(single) ";

 print "History(single) ";

 print "\n";

}

Changes required

A convention used in the report procedures is to put the same commands on

pop-up menus for all reports that use the same primary sort field. For example, all

the reports whose primary sort key is element or element_xpn display the same

set of commands.

286 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To make an additional command available for all reports whose primary sort key

is element or element_xpn, modify the routines stored in \script_rightclick and

then edit the associated routine in \script_tools\common.prl.

To change the report procedure, copy the contents of sub print_element_rightclick

(located in \script_tools\common.prl) and paste it into the appropriate part of the

interface specification. Then, add a declaration to display the new command.

Modified report procedure

Here is the modified version of Elements_with_Labels.prl. This report procedure is

example4.prl in theT0046 package, which is available at IBM Rational Support (see

“Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};

$ct = ""; if ($ct) {;};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};

$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};

$ctfind_paths = ""; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};

$debug = "no"; if ($debug) {;};

sub do_exit {

 $err = join(" ", @_);

 if ("$err" != "") {

 print STDERR "$err\n";

 }

 sleep(2);

 if ("$err" != "") {

 exit(1);

 } else {

 exit(0);

 }

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error

opening include file ’$common_dir\\common.prl’");

$buf = "";

while(<INCLUDE>) {

 $buf = $buf . $_;

}

close(INCLUDE);

eval $buf || do_exit("error on eval of include file

’$common_dir\\common.prl’");

my $args = $ARGV[0];

$args =~ s/%/ /g;

@args = split(";", $args);

my $cclabel = "";

$required_args = 0;

foreach(@args) {

 s/^[]+//;

 s/[]+$//;

 validate_arg_length($_);

 if (/^-i/) {

 print "description : ";

 print "’Elements with Labels’";

 print "\n";

 print "id : 2003\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN ";

 print "LABEL ";

Appendix C. Customizing Rational ClearCase Reports 287

https://www6.software.ibm.com/reg/rational/rational-i

print "\n";

customization change *** deleted following line

 #print_element_rightclick();

customization change *** added following 7 lines

 print "rightclick : ";

 print "Properties_of_Element(single) ";

 print "sep ";

 print "Compare_with_Previous_Version(single) ";

 print "Version_Tree(single) ";

 print "History(single) ";

 print "\n";

 print "fields : ";

 print "\"Element Path\"(element_pn, rightclick, sort 1)";

 print "\n";

 exit(0);

}

if (/^LOOKIN[]*=[]*(’.*’)/) {

 #print "paths are $1\n";

 check_lookin($1);

 $required_args++;

 next;

}

if (/^LABEL[]*=[]*’*([^’]*)’*/) {

 $cclabel = $1;

 #print "label is $cclabel\n";

 $required_args++;

 next;

}

print STDERR "unrecognized argument: $_\n";

print STDERR " ccperl $0 -i\n";

print STDERR " for script’s interface.\n";

do_exit("\n");

}

if ($required_args != 2) {

 print STDERR "usage: not all required arguments specified.\n";

 print STDERR " ccperl $0 -i\n";

 print STDERR " for script’s interface.\n";

 do_exit("\n");

}

open(CTFIND, "cleartool find $ctfind_paths -element

’lbtype_sub($cclabel)’ -print |");

while(<CTFIND>) {

 chomp;

 ($path, $rest) = split $CLEARCASE_XN_SFX, $_, 2;

 if ($rest) {;}

 print "$path;\n";

}

do_exit();

Example 5: adding a new command to Report Viewer pop-up

menu

The Elements with Branches report lists all elements associated with a branch and

path that the user provides. This report includes the following columns:

v Element Path

v Branch

The report procedure is located in

ccase–home–dir\Reports\Scripts\Elements\Branches\Elements_with_Branches.prl.

The change to this report adds the Merge Manager command to the pop-up menu.

This command is not supplied with Rational ClearCase Reports, so the work

288 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

required to included it is different from that described in “Example 4: changing the

pop-up menu for right-click handling” on page 286.

These commands currently appear on the pop-up menu:

v Properties of Element

v Version Tree

v History

Interface specification

This is the existing interface specification for Elements_with_Branches.prl:

if (/^-i/) {

 print "description : ’Elements with Branches’\n";

 print "id : 2013\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN BRANCH";

 print "\n";

 print_element_rightclick();

 print "fields : ";

 print "\"Element Path\"(element_xpn, sort 1, rightclick) ";

 print "\"Branch\"(branch) ";

 print "\n";

 exit(0);

}

Changes required

Making this modification requires a new script for the new command functions.

You must place this script in the \scripts_rightclick directory. (The script can be

written in any of the supported programming languages.) The script must be

coded to receive a stream on input from STDIN from a field that is designated by a

rightclick modifier in the interface specification of the report procedure. For

example, to create my_rc.prl, which starts clearmrgman.exe (Merge Manager), you

must place my_rc.prl in \scripts_rightclick.

Modified report procedure

Here is the modified version of Elements_with_Branches.prl. This report procedure

is example5.prl in theT0046 package, which is available at IBM Rational Support

(see “Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {;};

$ct = ""; if ($ct) {;};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};

$CLEARCASE_XN_SFX = ""; if ($CLEARCASE_XN_SFX) {;};

$ctfind_paths = ""; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};

$debug = "no"; if ($debug) {;};

sub do_exit {

 $err = join(" ", @_);

 if ("$err" != "") {

 print STDERR "$err\n";

 }

 sleep(2);

 if ("$err" != "") {

 exit(1);

 } else {

Appendix C. Customizing Rational ClearCase Reports 289

https://www6.software.ibm.com/reg/rational/rational-i

exit(0);

 }

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error

opening include file ’$common_dir\\common.prl’");

$buf = "";

while(<INCLUDE>) {

 $buf = $buf . $_;

}

close(INCLUDE);

eval $buf || do_exit("error on eval of include file

’$common_dir\\common.prl’");

my $args = $ARGV[0];

$args =~ s/%/ /g;

@args = split(";", $args);

my $ccbranch = "";

$required_args = 0;

foreach(@args) {

 s/^[]+//;

 s/[]+$//;

 validate_arg_length($_);

 if (/^-i/) {

 print "description : ’Elements with Branches’\n";

 print "id : 2013\n";

 print "helpfile :\n";

 print "parameters : ";

 print "LOOKIN BRANCH";

 print "\n";

customization change *** deleted following line

 #print_element_rightclick();

customization change *** added following 8 lines

 print "rightclick : ";

 print "my_rc(single) ";

 print "Properties_of_Element(single) ";

 print "sep ";

 print "Compare_with_Previous_Version(single) ";

 print "Version_Tree(single) ";

 print "History(single) ";

 print "\n";

 print "fields : ";

 print "\"Element Path\"(element_xpn, sort 1, rightclick) ";

 print "\"Branch\"(branch) ";

 print "\n";

 exit(0);

}

if (/^LOOKIN[]*=[]*(’.*’)/) {

 #print "paths are $1\n";

 check_lookin($1);

 $required_args++;

 next;

}

if (/^BRANCH[]*=[]*’*([^’]*)’*/) {

 $ccbranch = $1;

 $required_args++;

 next;

}

print STDERR "unrecognized argument: $_\n";

print STDERR " ccperl $0 -i\n";

print STDERR " for script’s interface.\n";

do_exit("\n");

}

if ($required_args != 2) {

 print STDERR "usage: not all required arguments specified.\n";

 print STDERR " ccperl $0 -i\n";

 print STDERR " for script’s interface.\n";

290 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

do_exit("\n");

}

open(CTFIND, "cleartool find $ctfind_paths -nxname -branch

’brtype($ccbranch)’ -print |");

while(<CTFIND>) {

 chomp;

 print "$_;$ccbranch;\n";

}

do_exit();

Here is the new command of my_rc.prl that has been created to support a new

pop-up menu command for starting Merge Manager. This report procedure is

available in the T0046 package, which is available at IBM Rational Support (see

“Obtaining the T0046 package” on page 293).

these are all set by set_record_vars in common_rightclick.prl

$CLEARCASE_PN = "", $CLEARCASE_XN_SFX = "", $CLEARCASE_ID_STR = "",

$CLEARCASE_XPN = "";

$CLEARCASE_BRANCH_PATH = "", $CLEARCASE_VERSION_NUMBER = "";

$ELEMENT_RESULTS = "", $BRANCH_RESULTS = "", $VERSION_RESULTS = "";

$results = "";

$debug = "no";

$start_dir = $0; $start_dir =~

s/\\scripts_rightclick\\.*/\\scripts_rightclick/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts_rightclick/$1\\script_tools/;

open(INCLUDE, "<$common_dir\\common_rightclick.prl") or do_exit("error

opening include file ’$common_dir\\common_rightclick.prl’");

$buf = "";

while(<INCLUDE>) {

 $buf = $buf . $_;

}

close(INCLUDE);

eval $buf || do_exit("error on eval of include file

’$common_dir\\common_rightclick.prl’");

if ($CLEARCASE_PN) {;}

if ($CLEARCASE_XN_SFX) {;}

if ($CLEARCASE_ID_STR) {;}

if ($CLEARCASE_XPN) {;}

if ($CLEARCASE_BRANCH_PATH) {;}

if ($CLEARCASE_VERSION_NUMBER) {;}

if ($ELEMENT_RESULTS) {;}

if ($BRANCH_RESULTS) {;}

if ($VERSION_RESULTS) {;}

if ($debug) {;}

$first = "yes";

while(<STDIN>) {

 chomp;

 set_record_vars($_);

things to be done a record at a time are done here

 if ($first eq "yes") {

 $first = "no";

 open(COMMAND, "clearmrgman |");

 while(<COMMAND>) {;}

 close(COMMAND);

 }

}

things to be done with the result set as a whole go here

Appendix C. Customizing Rational ClearCase Reports 291

https://www6.software.ibm.com/reg/rational/rational-i

$results =~ s/ $//;

#print "results are $results\n";

Troubleshooting customization

There are two primary areas that you may need to troubleshoot:

v Errors in the interface specification

v Coding high-level languages other than ccperl

Errors in the interface specification

These are the common errors you may make when coding the interface

specification for your report procedure:

v The interface syntax used in your program does not conform to the interface

specification.

v Invalid parameter names are used for the parameter specification.

v The rightclick specification calls a routine that does not exist in the \right_click

folder.

v The print statements to STDOUT are in a different order from that defined by

the fields specification.

You can identify errors in the interface specification easily by using the testing

script, ifaces.prl. This script checks customized report procedures that have been

written in ccperl. It is available with the T0046 package (see “Coding high-level

languages other than ccperl” on page 293).

To start the testing script, use a command of this form:

ccperl ifaces.prl <path-to-script-or-directory-tree>

Test your report procedures before you check them in to the shared directory tree

that you have configured.

If you do not run the testing script before using your report in Report Builder and

a parsing error occurs in processing the interface specification, the new report is

not displayed in the list of reports in the reports pane. There is no feedback; you

see the report description in the reports pane or you see nothing. If you do not see

a description, the parsing error is serious. If you do see a description, the interface

specification is somewhat correct, but you may still be using an invalid parameter,

referring to a nonexistent right-click routine, or sending output in the wrong order

to STDOUT.

The Report Builder does not check for valid parameters. For example, consider the

interface specification for a new report procedure, my_custom_report.prl, with the

following interface specification:

description : "This test report asks for a three known parameters and

two unknown parameters"

id : 2500

parameters : LOOKIN UNKNOWN_1 STREAMS FOO PROJECT

rightclick :

fields : "field 1"(string)

292 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The second and fourth parameters of this interface specification are invalid. At run

time, the description for this report appears in the Report Builder reports pane, but

the second and fourth parameters are displayed as blank lines in the parameter

pane.

However, the testing script detects these errors because these parameter names are

not supplied with ClearCase Reports (see Table 9):

my_custom_report.prl:

desc: this test report asks for a three known parameter and two unknown

parameters

id: 2500

parm: LOOKIN

ERROR: illegal parameter: UNKNOWN_1

continue? (y/n) > y

UNKNOWN_1 STREAMS

ERROR: illegal parameter: FOOBAR

continue? (y/n) > y

Coding high-level languages other than ccperl

When coding report procedures in languages other than ccperl, for example, Visual

C++, Java, Javascript or Visual Basic, refer to the programming examples available

in the T0046 package.

Obtaining the T0046 package

Obtain the T0046 package at the following URL:

https://www6.software.ibm.com/reg/rational/rational-i

The site explains which browser types and versions are supported. At the Rational

Download and Licensing Center page, in Search, enter T0046 and click Search. At

the Rational ClearCase Add-ins page, find the T0046 entry.

Appendix C. Customizing Rational ClearCase Reports 293

https://www6.software.ibm.com/reg/rational/rational-i

294 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1992, 2006 295

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department BCFB

20 Maguire Road

Lexington, MA 02421

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. (c) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Additional legal notices are described in the legal_information.html file that is

included in your Rational software installation.

Trademarks

296 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

AIX, ClearCase, ClearQuest, DB2, IBM, Rational, RequisitePro, and XDE are

trademarks of International Business Machines Corporation in the United States,

other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Appendix D. Notices 297

298 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Index

A
about 12

activities
about 9

assign 102

create and assign in Rational ClearQuest (procedure) 102

creating and setting in new project (procedure) 94

decomposing in Rational ClearQuest 81

fixing Rational ClearQuest links 103

linked to Rational ClearQuest records 105

migrating to integration with Rational ClearQuest

(UCM) 101

state transition after delivery 70

verifying owner of 70

when to delete unused 126

administrative VOBs and PVOBs 54

assignments
verifying 28

attributes
about 160

change request policy 184

use in config specs 170

use in monitoring project status 180

B
base ClearCase and UCM, compared 3

baseline-plus-changes model 181

baselines in base ClearCase 242

creating, extended example 247, 251

labeling policy 181

baselines in UCM 5

about 13

benefits of frequent 51

comparing (procedure) 123

composite 14

conflicts in composite 120

creating 19

creating composite 96

creating for imported files (procedure) 98

creating new (procedure) 114

creating streams for testing (procedure) 106

dependency relationships in composite of ordinary

component 48

dependency relationships in pure composite 47

descendant 14

fixing problems (procedure) 118

foundation 14, 91

making descendant 49

making descendant of composite 50

naming convention 52

naming template, setting 92

overrides 121

promoting and demoting (procedure) 119

promotion levels 24

pure composite 47

recommend 119

recommended 25

recommended promotion policy 64

sharing between projects 151

baselines in UCM (continued)
strategy for 45

test planning 52

when to create 51

when to delete unused 126

bootstrap projects 146

branch types
example 245

branches
about 158

bug-fix policy 181

config spec rules for 166, 167, 168

controlling creation of 159

example of project strategy 243

in Rational ClearCase MultiSite 159

mastership transfer models 187

merge policies 161

merging elements from UCM projects 152

merging to main 224

multiple levels, config specs for 168

naming conventions 159

sharing for merges 224

stopping development on 254

building software, view configurations 174

C
ccase-home-dir directory xiii

change requests
tracking in base ClearCase 184

tracking states 28

change set 9, 191

cmregister command 59

code page conversion 207

Component Tree Browser 122

components
about 11

adding to integration stream (procedure) 110

ancillary 32

candidates for read-only 33

conversion of VOBs (procedure) 97

crating for element storage 88

crating multiple-component VOB 88, 89

creating one in VOB 91

creating one per VOB 89, 90

creating without a VOB root directory 87

design considerations 29

importing files for (procedure) 95

mapping to projects 30

modifiability 63

organizing for project 31

recommended directory structure 33

visibility 63

when to delete unused 126

without a VOB root directory 50

composite baselines (UCM) 14

create (procedure) 96

pure 47

config specs
about 159, 163

default, standard rules in 163

© Copyright IBM Corp. 1992, 2006 299

config specs (continued)
examples for builds 174

examples for development tasks 166

examples for one project 245

examples of time rules 167, 168, 172, 173

examples to monitor project 170

include file facility 164

project environment for samples 165

restricting changes to one directory 169

selecting library versions 174

sharing across platforms 177

use of element types in 231

config.pl file 194, 201

configTemplate.pl file 201

conventions, typographical xiii

cquest-home-dir directory xiii

credentials
Rational ClearQuest user database 82

customer support xvi

D
deliver operations

backward 40

checkouts policy 65

element types and merging 56

finding posted work (procedure) 113

forward 40

from integration stream 151

MultiSite 113

Rational ClearCsse MultiSite and 18

rebase before policy 65

remote 113

remote, completing (procedure) 113

state transition policy 70

undoing 113

development streams 12

configuration 36

creating feature-specific (procedure) 107

creating for testing (procedure) 106

feature-specific 35, 107

making read-only 106

read-only 45

rebase (procedure) 118

when to delete unused 126

directories, merging 227

directory structure
creating new (procedure) 94

recommended, for UCM components 33

documentation
Help description xiv

E
element relocation in UCM 111

element types
how assigned 230

predefined and user-defined 232

element types in UCM 56

define scope 57

manage merge behavior 56

environment variables for Rational ClearQuest 83

event records 161

F
feature levels 56

feature-specific streams 107

foundation baselines
choosing 91

definition 14

G
global types 54, 161

H
Help, accessing xiv

hyperlinks
about 160

requirements tracking mechanism 185

I
IBM Rational Unified Process 29

importing files and directories 95

include file facility 164

integration streams
about 12

adding components (procedure) 110

configuration 36

delivery from 151

locking considerations 52

merging to base ClearCase branch 152

updating development view load rules 111

when to delete unused 126

integration views
creating for UCM project (procedure) 93

recommended view type 64

integration with Rational ClearQuest (base ClearCase) 191

association batch feature 211

associations 209

automatic associations 214

automatic associations tuning 213

batch confirmation 213

batch definition 213

change set 191

checklist 195

comment patterns 215

configuration file 194

configuration file editing 200

configuration parameter summary 201

configuration test 208

connectivity 203

CQSchema 205

customization policy 194

customizing 217

debugging 215

enabling VOBs 192

forcing checkin success 211

GUI use 211

installing triggers 197

logging output 216

overview 191

package 194

performance 211

planning 196

policy choices 197, 209

query filter 210

300 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

integration with Rational ClearQuest (base ClearCase)

(continued)
query support 192

query usage 210

Query Wizard 217

Rational ClearCase MultiSite support 207

Rational ClearQuest user database definition 204

Rational ClearQuest user database setup 196

request set 191

SAMPL user database 200

sharing configuration file 198

start configuration tool 199

testing 216

timing information 216

trigger installation 199

trigger versions 193

troubleshooting connections 209

use with UCM integration 263

Web interface 203

integration with Rational ClearQuest (UCM)
about 16, 26

credentials 82

customizing policies 81

database, setting up 75

decomposing activities 81

disabling links to project 102

enabling custom schema (procedure) 76

enabling projects to use (procedure) 100

environment variables 83

mastership when enabling 104

planning issues 57

policies for 69

Rational ClearQuest MultiSite requirements 104

replica and naming requirements 104

setting up 16

setting up UCM schemas (procedure) 75

use with base ClearCase 263

L
labels

about 160

baselines in base ClearCase 181

use in config specs 173, 174

load rules 164

updating for new component in parent stream 111

locks
about 161

examples 182

M
magic files 230

main branch 158

makefiles and config specs 175

mastership
about 18

models of transfer 187

mergetypes 56

merging in base ClearCase
about 161

commands for 222

directory versions 227

entire source tree 225

extended example 248, 252

GUI tools for 221

merging in base ClearCase (continued)
how it works 219

other tools 228

removing merged changes 223

selective merge 222

to main branch 224

mkelem_cpver.pl script 111

MultiSite
remote deliver operations 113

N
naming conventions

branches 159

Rational ClearQuest schema 58

UCM baselines 52

views in base ClearCase 159

naming template, baselines in UCM 92

setting 92

O
obsolete objects 161

overrides 121

P
package

obtaining T0046 293

parallel development
base ClearCase mechanisms 158

extended example in base ClearCase 241

UCM scenarios 147

parent/child controls in Rational ClearQuest 81

patch release in UCM project 150

Perl
usage 132

planning
projects in UCM 29

policies in base ClearCase
access to project files 182

bug-fixing on branches 181

change requests 184

coding standards 184

documenting changes 179

enforcement mechanisms 160, 179

integration with Rational ClearQuest choices 197

labeling baselines 181

monitoring state of sources 180

notification of new work 183

on merging 161

requirements tracking 185

restricting changes visible 182

restricting use of commands 187

transfer of branch mastership 187

policies in UCM
about 16

action after activity change 72

activity change transition 73

allowed record types for activities 70

approval before activity change 72

approval before delivery 70

baseline modification 65

changing with integration and MultiSite 105

customizing Rational ClearQuest 81

default view types 64

Index 301

policies in UCM (continued)
delivery between projects 73

delivery from other projects 69

delivery transfer of mastership (after) 72

delivery transfer of mastership (before) 71

delivery transition 71

delivery transition state 70

delivery with changes of non-visible components 69

delivery with checkouts 65

delivery with foundation baseline changes 67

delivery with missing component changes 68

delivery with non-modifiable component changes 68

disallow record submission from Rational ClearCase

client 69

modifiable components 63

modifiable components and visibility 63

project modification 65

promotion levels 24

rebase before deliver 65

recommended baselines 64

setting Rational ClearQuest (procedure) 101

stream modification 65

verify activity owner before checkout 70

policy choices
integration with Rational ClearQuest (base ClearCase) 209

Project Explorer
start 88

projects in base ClearCase
branching strategy 158

config specs 159

development policies 160

extended example of lifecycle 241

generating reports 161

merging policies 161

planning and setup 157

views to monitor progress 170

projects in UCM
about 9

bootstrap 146

changing name of 105

cleanup tasks 125

component-oriented 143

composite baselines in component-oriented 145

composite baselines in release-oriented 143

concurrent, managing 147

create from existing projects 99

creating 11

creating from existing configuration 97

creating new (procedure) 91

delete unused 125

deliver from integration stream 151

disabling links to Rational ClearQuest database 102

factors in gauging scope 30

fixing Rational ClearQuest activity links 103

importing components 95

incorporating patch release 150

lock and hide 127

mainline 142

maintenance tasks 109

managing multiple 147

mapping components to 30

merging to base ClearCase branches 152

migrating unfinished work 149

multiple-stream 34

parallel 30

planning issues 29

policies 63

projects in UCM (continued)
release-oriented 141

set up new 85

setting baseline naming template 92

single-stream 44

tools to monitor progress 122

promotion levels
about 24

changing (procedure) 119

default 52

defining in new project (procedure) 93

policy for recommended baselines 64

pure composite baselines (UCM) 47

PVOBs
about 11

administrative VOB and multiple 55

as administrative VOBs 54

creating from existing configuration 97

creating new (procedure) 86

feature levels and multiple 56

links and Rational ClearQuest MultiSite 103

mapping to Rational ClearQuest user database 57

multiple 54

planning 53

Q
Query Wizard

integration with Rational ClearQuest (base ClearCase) 217

querying Rational ClearQuest user database 28, 124

R
Rational ClearCase MultiSite

branches and 159

establish for integration with Rational ClearQuest (base

ClearCase) 207

mastership transfer models 187

use in UCM 18

Rational ClearCase Reports
customizable features 265

customization examples 276

how it works 265

interface specification in report procedures 270

parameter choosers 274

run-time processing 266

setting up shared directories 268

Rational ClearQuest
querying user database 124

recommended use of Rational ClearCase integrations 263

scripts instead of triggers (UCM) 130

start client 101

Rational ClearQuest MultiSite
links in PVOBs 103

UCM integration affect 104

Rational ClearQuest user database
setup for integration with Rational ClearQuest (base

ClearCase) 196

ratlperl 132, 189

read-only streams 45

rebase operations
advance 21

between projects (procedure) 148

directions 20

element types and merging 56

lateral 23

302 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

rebase operations (continued)
policy for deliver operations 65

revert 22

rules summary 23

recommended baselines
policy for promotion level 64

record types for schemas, custom 78

remote deliver operations 113

reports
for base ClearCase projects 161

Rational ClearQuest queries 124

request set 191

S
schemas (Rational ClearQuest)

about UCM-enabled 28

adding Rational ClearCase definitions to 197

adding Rational ClearCase definitions to (procedure) 197

enabling custom for UCM 60

enabling custom for UCM (procedure) 76

predefined, using 75

queries 28

requirements for UCM 59

storage issues 59

selective merge 222

serial development environment 44

smoke tests 52

state types
about 28

default transition requirements 79

setting for custom schemas 78

streams 4, 12

alternate targets 39

alternate targets in same project 39

coordinating in same project 41

creating feature-specific 107

default targets 38

development configuration 36

hierarchies 35

integration configuration 36

lock and hide 127

locking (procedure) 113

projects with single 44

read-only 45

relationships 36

sharing by delivery 42

sharing by rebase 41

strategy 34

unlocking (procedure) 116

subtractive merge 223

Suite 105

supertypes 232

system architecture 29

T
T0046 package 293

time rules in config specs 167, 168, 172, 173

triggers
about 160

attach 184

checkin command example 179

installing for integration with Rational ClearQuest (base

ClearCase) 192

list installed in VOBs 199

triggers (continued)
policy scripts instead of 130

preoperation and postoperation 130

sharing in interop environments (base ClearCase) 188

sharing in interop environments (UCM) 131

to disallow checkins 184

to notify team of new work 183

to restrict use of commands 187

UCM use 129

type managers
about 230

creating directory for 234

how they work 233

implementing compare method 236

inheriting methods 234

predefined 232

testing 238

user defined 232

typographical conventions xiii

U
UCM and base ClearCase, compared 3

UCMPolicyScripts package 59

UnifiedChangeManagement package 59, 60

user accounts
creating Rational ClearQuest profiles (procedure) 82

V
version control, candidates for 30

view profiles
moving to UCM 261

views
config specs 163

configuring for builds 174

configuring for development tasks 166

configuring historical 173

configuring to monitor project 170

naming conventions in base ClearCase 159

policy for default types in UCM 64

restricting changes visible in 182

sharing for merges 225

VOB Creation Wizard 86

VOBs
converting to UCM components (procedure) 97

creating and populating in base ClearCase 157

enabling for integration with Rational ClearQuest (base

ClearCase) 192

how many in project (UCM) 31

list triggers installed in 199

W
Web interface

integration with Rational ClearQuest (base ClearCase) 203

work areas 12

Index 303

304 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Readers’ Comments — We’d Like to Hear from You

ClearCase and Rational ClearCase LT

Guide to Managing Software Projects

Version 7.0.0

 Publication No. GI11-6712-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 GI11-6712-00

GI11-6712-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Attn: Dept CZLA

20 Maguire Road

Lexington, MA 02421-3112

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

GI11-6712-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Typographical conventions
	Online documentation
	Help system
	Reference pages
	Command syntax
	Tutorial
	PDF manuals

	Product-specific features
	Manual organization
	Related information
	Rational ClearCase documentation roadmap
	Rational ClearCase LT documentation roadmap

	Contacting IBM Customer Support for Rational software products
	Downloading the IBM Support Assistant

	Summary of changes
	Part 1. Introduction
	Chapter 1. Choosing between UCM and base ClearCase
	Differences between UCM and base ClearCase
	Branching and creating views
	Using components to organize files
	Creating and using baselines
	Managing activities
	Enforcing development policies

	Part 2. Working in UCM
	Chapter 2. Understanding UCM
	Overview of the UCM process
	Creating the project
	Creating a PVOB
	Organizing directories and files into components
	Shared and private work areas
	Stream hierarchies
	Single-stream projects

	Starting from a baseline
	Composite baselines
	Baselines and their uses
	Baselines and streams

	Setting up the UCM integration with Rational ClearQuest

	Setting policies
	Assigning work
	Creating a testing stream
	Building components
	Rational ClearCase MultiSite consideration

	Making a baseline
	After making a baseline
	The rebase operation
	Directions of rebase operations
	Advance rebase operations
	Revert rebase operations
	Lateral rebase operations
	Summary of rules for rebasing a stream

	Recommending the baseline
	Recommended baselines

	Monitoring project status
	Overview of the UCM integration with Rational ClearQuest
	Associating UCM and Rational ClearQuest objects
	Schema enabled for UCM
	State types
	Queries in a Rational ClearQuest schema enabled for UCM

	Chapter 3. Planning the project
	Using the system architecture as the starting point
	Mapping system architecture to components
	Deciding what to place under version control
	Mapping components to projects
	Amount of integration
	Need for parallel releases

	Organizing components
	Deciding how many VOBs to use
	Identifying additional components
	Defining the directory structure
	Identifying read-only components

	Choosing a stream strategy
	The basic multiple-stream project
	Stream hierarchies
	Stream configurations and baseline contents
	The integration stream configuration
	Development stream configurations

	Stream relationships
	Stream hierarchy and default targets
	Alternate targets
	Alternate targets in the same project
	Coordinating development streams in the same project
	Sharing changes by a rebase operation
	Sharing changes by a deliver operation
	Simplify a deliver operation with a rebase operation

	Single-stream projects
	Read-only streams

	Specifying a baseline strategy
	Identifying a project baseline
	Pure composite baselines
	Dependency relationships in pure composite baselines
	Dependency relationships in composite baselines of ordinary components
	Making a new descendant baseline
	Whether to use pure composite baselines
	Changing to a pure composite baseline
	Creation of composite baseline descendants

	When to create baselines
	Identifying the initial baseline
	Ongoing baselines

	Defining a baseline naming convention
	Identifying promotion levels to reflect state of development
	Planning how to test baselines

	Planning PVOBs
	Deciding how many PVOBs to use
	Understanding the role of the administrative VOB
	Using multiple PVOBs
	Multiple PVOBs and a common administrative VOB
	Multiple PVOBs and feature levels

	Identifying special element types
	Using mergetype to manage merge behavior
	Defining the scope of element types

	Planning how to use the UCM integration with Rational ClearQuest
	Mapping PVOBs to Rational ClearQuest user databases
	Rational ClearCase MultiSite requirement
	Integration requirement for Rational ClearQuest MultiSite
	Naming projects that are linked to same user database
	Use of multiple user databases

	Deciding which schema to use
	Overview of the UnifiedChangeManagement schema
	Enabling a schema for UCM

	Chapter 4. Setting policies
	Components and baselines policies
	Modifiable components
	Component modifiability and visibility

	Default promotion level for recommending baselines

	Default view types
	Permissions to modify projects and streams
	Allow all users to modify the project
	Allow all users to modify the stream and its baselines

	Policies for all deliver operations
	Do not allow deliver to proceed with checkouts in the development stream
	Rebase before delivery

	Policies for deliver operations to nondefault targets
	Deliver changes from the foundation in addition to changes from the stream
	Allow deliveries that contain changes to missing or non-modifiable components
	Allow interproject deliver to project or stream
	Require that all source components are visible in the target stream

	Policies for the UCM integration with Rational ClearQuest
	For submitting records from a Rational ClearCase client
	Disallow submitting records from ClearCase client
	Allowed record types

	For WorkOn
	Perform ClearQuest action before work on

	For delivery
	Perform ClearQuest action before delivery
	Perform ClearQuest action after delivery
	Transition to complete after delivery
	Transfer ClearQuest mastership before delivery
	Transfer ClearQuest mastership after delivery

	For changing activities
	Perform ClearQuest action before changing activity
	Perform ClearQuest action after changing activity
	Transition to complete after changing activity

	Policies and interproject deliveries

	Chapter 5. Setting up a Rational ClearQuest user database for UCM
	About setting up a Rational ClearQuest user database
	Using the predefined UCM-enabled schemas
	To set up a Rational ClearQuest user database to work with UCM

	Adding UCM support to an existing schema
	To enable a schema to work with UCM
	Assigning state types to the states of a record type
	To map record states to state types

	Requirements for enabling custom record types
	Setting state types
	State transition default action requirements for record types
	To set default actions for states

	Upgrading your schema to the latest UCM package
	To upgrade the schema

	Customizing Rational ClearQuest project policies
	To modify the behavior of a policy

	Associating child activity records with a parent activity record
	Using parent and child controls

	Creating users and adding credentials
	To create Rational ClearQuest user account profiles
	Creating and maintaining credentials for Rational ClearQuest database sets

	Setting the environment (Linux and the UNIX system)

	Chapter 6. Setting up the project
	About setting up the project
	Creating a project from scratch
	Creating the project VOB
	To create a PVOB (the Windows system)
	To start the VOB Creation Wizard (the Windows system)
	To create a PVOB (Linux and the UNIX system)

	Creating components for storing baseline dependencies
	To create a component without a VOB root directory
	To start Project Explorer

	Creating components for storing elements
	To create a multiple-component VOB (Windows)
	To create a multiple-component VOB in Rational ClearCase LT (Windows)
	To create a multiple-component VOB (Linux and the UNIX system)
	To create a multiple-component VOB in Rational ClearCase LT (Linux and the UNIX system)
	To create a component and store it in the VOB
	To create one component per VOB (Windows)
	To create a VOB and one component in Rational ClearCase LT (Windows)
	To create one component per VOB (Linux and the UNIX system)
	To create a component in Rational ClearCase LT (Linux and the UNIX system)

	Creating the project
	To create a project
	Setting a baseline naming template
	Defining promotion levels

	Creating an integration view
	To create an integration view

	Creating and setting an activity in the integration stream (Linux and the UNIX system only)
	To create and set an activity (Linux and the UNIX system)

	Creating the directory structure
	To add a directory element to a component (the Windows system)
	To add a directory element to a component (Linux and the UNIX system)

	Importing directories and files from outside Rational ClearCase version control
	To migrate source files into a component

	Making baselines of newly populated components
	Creating the dependency relationships for composite baselines in the project
	To create a composite baseline

	Recommending a baseline for new components

	Creating a project based on an existing Rational ClearCase configuration
	Creating the PVOB from an existing Rational ClearCase configuration
	Making components from existing VOBs
	To make a VOB into a component
	To make a directory tree within a VOB into a component

	Making a baseline from a label
	To create a baseline by label type

	Creating the project
	Finishing the project configuration

	Creating a project based on an existing project
	Capturing final baselines in a composite baseline
	To create a pure composite baseline from existing approved baselines

	Creating the project from another project
	To create a project based on an existing project

	Creating an integration view

	Enabling use of the UCM integration with Rational ClearQuest
	To enable a project to work with a Rational ClearQuest user database
	Changing the project to a different Rational ClearQuest user database
	Migrating activities
	Setting project policies
	To set policies in Rational ClearCase control
	To start a Rational ClearQuest client
	To set policies from the Rational ClearQuest client

	Assigning activities
	To create and assign activities in a Rational ClearQuest user database

	Disabling the link between a project and a Rational ClearQuest user database
	To disable the project and user database link

	Fixing projects that contain linked and unlinked activities
	Detecting unlinked activities
	Correcting unlinked activities

	How the UCM integration with Rational ClearQuest is affected by Rational ClearQuest MultiSite
	Replica and naming requirements
	Transferring mastership of the project
	Linking activities to Rational ClearQuest records
	Changing project policy settings
	Changing the project name

	Working with IBM Rational Suite (Windows)
	Creating a development stream for testing baselines
	To create a development stream

	Creating a feature-specific development stream
	About creating feature-specific development streams
	To create a feature-specific development stream

	Chapter 7. Managing the UCM project
	About managing a project
	Adding components
	To add a component to a stream
	To make a component modifiable within the project
	To synchronize a view with a new configuration
	To synchronize a child stream with project modifiable components
	To synchronize a child stream view with new parent stream configuration
	To edit the view load rules
	Element relocation
	To relocate elements

	Building components
	About building components
	Locking the shared stream
	To lock a stream

	Finding work that is ready to be delivered
	To find all deliver operations that are in the posted state
	To complete remote deliver operations for a development stream

	Undoing a deliver operation
	Building and testing the components

	Creating a new baseline
	About making a baseline
	To make a baseline
	To make new baselines for all components in the stream
	To make a baseline for a set of activities
	To make a baseline of one component

	To unlock the stream

	Testing the baseline
	To test in a separate development stream
	Rebasing the test development stream
	To rebase the development stream

	Fixing problems in baselines
	To fix a problem in a new baseline

	Recommending the baseline
	To change a baseline promotion level
	To recommend a baseline or set of baselines

	Resolving baseline conflicts
	Conflicts between a composite baseline and an ordinary baseline
	Conflicts between composite baselines

	Monitoring project status
	Viewing baseline histories
	To view baseline history (the Windows system)
	To view baseline history (Linux and the UNIX system)

	Comparing baselines
	To compare baselines in Component Tree Browser (Windows only)
	To compare two baselines
	About the Compare Baselines window

	Querying Rational ClearQuest user databases
	Using Rational ClearCase Reports (Windows systems only)

	Cleaning up the project
	Removing unused objects
	About deleting projects
	About deleting streams
	About deleting components
	About deleting baselines
	About deleting activities
	To delete an unused object

	Locking and making obsolete the project and streams
	To lock and hide an object
	To see objects that are obsolete

	Chapter 8. Using triggers to enforce UCM development policies
	Overview of triggers
	Supported triggers
	Preoperation and postoperation triggers
	Scope of triggers
	Using attributes with triggers
	When to use Rational ClearQuest scripts instead of UCM triggers

	Sharing triggers among different types of platform
	Using different paths or different scripts
	Using the same script
	Tips for sharing scripts

	Enforce serial deliver operations
	Delivery setup script
	Delivery preoperation trigger script
	Delivery postoperation trigger script

	Send mail to developers on deliver operations
	E-mail notification setup script
	E-mail notification postoperation trigger script

	Do not allow activities to be created on the integration stream
	Implementing a role-based access control system
	Role-based preoperation trigger script

	Additional uses for UCM triggers

	Chapter 9. Managing multiple projects
	Project uses
	Release-oriented projects
	Using a mainline project
	Composite baselines in release-oriented projects

	Component-oriented Projects
	Composite baselines in component-oriented projects

	Bootstrap projects
	Mixing project organizations

	About managing multiple projects
	Managing a current project and a follow-on project simultaneously
	To rebase an integration stream to baselines of another project
	Migrating unfinished work to a follow-on project
	Incorporating a patch release into a new version of the project
	Delivering work from an integration stream to another project
	To deliver work between integration streams

	Sharing baselines between sibling streams in different projects

	Merging from a project to a non-UCM branch

	Part 3. Working in base ClearCase
	Chapter 10. Managing projects in base ClearCase
	About base ClearCase project management
	Setting up the project
	Creating and populating VOBs
	Planning a branching strategy
	Branch names
	Branches and Rational ClearCase MultiSite

	Creating shared views and standard config specs
	Recommendations for view names

	Implementing development policies
	Using labels
	Using attributes, hyperlinks, triggers, and locks
	Global types
	Generating reports

	Integrating changes

	Chapter 11. Defining project views
	About defining project views
	How config specs work
	Default config spec
	The standard configuration rules
	Omitting the standard configuration rules

	Config spec include files
	To reconfigure your view with the modified config spec

	Project environment for sample config specs
	Views for project development
	View for new development on a branch
	Variation that uses a time rule

	View to modify an old configuration
	Omitting the /main/LATEST rule
	Variation that uses a time rule

	View to implement multiple-level branching
	View to restrict changes to a single directory

	Views to monitor project status
	View that uses attributes to select versions
	Pitfalls for development of using attributes to select versions

	View that shows changes of one developer
	Historical view defined by a version label
	Historical view defined by a time rule

	Views for project builds
	View that uses results of a nightly build
	Variations that select versions of project libraries
	View that selects versions of application subsystems
	View that selects versions that built a particular program
	Configuring the makefile
	Fixing bugs in the program
	Selecting versions that built a set of programs

	Sharing config specs among Linux, the UNIX system, and Windows system
	Path separators
	Paths in config spec element rules
	Config spec compilation

	Chapter 12. Implementing project development policies
	About implementing project development policies
	Good documentation of changes is required
	All source files require a progress indicator
	Label all versions used in key configurations
	Isolate work on release bugs to a branch
	Avoid disrupting the work of other developers
	Deny access to project data when necessary
	Notify team members of relevant changes
	To attach triggers to existing elements

	All source files must meet project standards
	Associate changes with change orders
	Associate project requirements with source files
	Prevent use of certain commands
	Certain branches are shared among Rational ClearCase MultiSite sites
	Sharing triggers among different types of platform
	Using different paths or different scripts
	Using the same script

	Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest
	Overview of the base ClearCase integration with Rational ClearQuest
	What the integration does
	How the integration works
	About enabling a VOB and installing triggers
	Query support
	About locally stored information
	About trigger versions
	About the integration package
	About the configuration file

	Policy regarding customization and support
	Checklist of configuration steps

	Planning for the base ClearCase integration with Rational ClearQuest
	Setting up the Rational ClearQuest user database for base ClearCase
	Adding Rational ClearCase definitions to a Rational ClearQuest schema
	To add Rational ClearCase definitions to and upgrade a Rational ClearQuest schema

	Setting policies and installing triggers in a ClearCase VOB
	Using a shared configuration file and triggers
	Installing triggers in a VOB on Linux and the UNIX system
	To start the Rational ClearQuest Integration Configuration tool
	To specify multiple record types
	To list triggers installed in a VOB
	Quick start for evaluations

	Editing the configuration file
	Overview of the configuration file
	Locating the configuration file
	Configuration file use and format
	Summary of configuration parameters

	Connecting Rational ClearCase clients and a Rational ClearQuest user database
	Establishing the Rational ClearQuest Web interface
	Defining the Rational ClearQuest user database and database set
	Establishing the schemas
	Overview of DefineCQSchema
	DefineCQSchema
	ChangeFieldMap
	SetQuery
	SetResultSet
	Sharing a CQSchema

	Establishing Rational ClearCase MultiSite support
	About code page conversion
	The integration code page conversion process
	The contents of the configuration file
	Configuration parameters for code page conversion

	Testing the configured connections
	Troubleshooting the configured connections

	Making policy choices
	Allowing multiple associations
	Controlling query usage
	CQCC_QUERY_ENABLE
	CQCC_QUERY_FILTER

	Allowing use of the graphic user interface (GUI)
	Forcing checkin success before committing associations

	Enhancing performance
	Using the association batch feature
	Handling an incomplete posting
	Defining a batch
	Requesting confirmation of batch completion
	Tuning automatic association features

	Controlling and using automatic associations
	Enabling and disabling automatic associations
	Using automatic associations
	Specifying associations in comment patterns

	Debugging and analyzing operations
	Generating operational information
	Producing timing information
	Controlling logged output

	Testing the integration

	Customizing the integration
	About the Integration Query wizard
	To start the Integration Query wizard

	Chapter 14. Integrating changes
	About integrating changes
	How merging works
	Using the GUI to merge elements
	About the Merge Manager
	To start the Merge Manager
	About Diff Merge
	To start Diff Merge
	About the Version Tree Browser
	To start the Version Tree Browser

	Using the command line to merge elements

	Common merge scenarios
	Selective merge from a subbranch
	Removing the contributions of some versions
	Merging all project work
	All project work isolated on a branch
	All project work isolated in a view

	Merging a new release of an entire source tree
	Merging directory versions

	Using other merge tools

	Chapter 15. Using element types to customize file element processing
	About element types and file processing
	File types in a typical project
	How element types are assigned
	Sample magic file on the UNIX system
	Sample Magic File on the Windows system

	Element types and type managers
	Other applications of element types
	Using element types to configure a view
	Processing files by element type

	Predefined and user-defined element types
	Predefined and user-defined type managers
	Creating a new type manager (the UNIX system)
	Writing a type manager program (the UNIX system)
	Exit status of a method

	Type manager for manual page source files
	Creating the type manager directory
	Inheriting methods from another type manager
	The create_version method
	The construct_version method

	Implementing a new compare method
	Script for compare method
	Testing the type manager
	Installing and using the type manager

	Icon use by GUI browsers

	Chapter 16. Using Rational ClearCase throughout the development cycle
	About using Rational ClearCase throughout the development cycle
	Project overview
	Development strategy
	Project manager and Rational ClearCase administrator
	Use of branches
	Creating project views

	Creating branch types
	Creating standard config specs
	Creating, configuring, and registering views
	Development begins
	Techniques for isolating your work

	Creating baseline 1
	Merging two branches
	Integration and test
	Labeling sources
	Removing the integration view

	Merging ongoing development work
	Preparing to merge
	Merging work

	Creating Baseline 2
	Merging from the r1_fix branch
	Preparing to merge from the major branch
	Merging from the major branch
	Decommissioning the major branch
	Integration and test

	Final validation: creating Release 2.0
	Labeling sources
	Restricting use of the main branch
	Setting up the test view
	Setting up the trigger to monitor bug-fixing
	Fixing a final bug
	Rebuilding from labels
	Wrapping up

	Part 4. Appendixes
	Appendix A. Moving from view profiles to UCM
	View profiles and UCM
	Feature comparison
	Branches and streams
	Moving work among branches or streams
	VOBs and components
	Checkpoints and baselines

	Moving view profile information to UCM
	Preparing your view profile project
	Moving the view profile information

	Appendix B. Rational ClearCase integrations with Rational ClearQuest
	Understanding the Rational ClearCase integrations with Rational ClearQuest
	Managing coexisting integrations
	Schema usage with both integrations
	Presentation

	Appendix C. Customizing Rational ClearCase Reports
	How Rational ClearCase Reports works
	What you can customize in Rational ClearCase Reports
	Run-Time processing sequence for Reports programming interface
	Configuring shared report directories
	Adding report procedures to source control
	Setting the Report Builder to the customized directory

	Default directory structure for Rational ClearCase Reports
	Populating the Report Builder tree pane

	Report Procedure interface specifications
	Interface specification for All_Views.prl
	Description specification
	Help files
	Parameters specification
	Rightclick specification
	Fields specification
	field_type conventions

	Parameter choosers
	Path chooser
	UCM targets chooser
	Type chooser
	Date/time chooser
	Text chooser

	Viewing the report
	Saving report data

	Report programming examples
	Example 1: Adding a column to report output
	Processing logic
	Interface specification
	Changes required
	Modified report procedure

	Example 2: changing directory organization, description, and output
	Processing logic
	Interface specification
	Changes required
	Modified report procedure

	Example 3: changing description, parameter types, and output
	Processing logic
	Interface specification
	Changes required
	Modified report procedure

	Example 4: changing the pop-up menu for right-click handling
	Interface specification
	Changes required
	Modified report procedure

	Example 5: adding a new command to Report Viewer pop-up menu
	Interface specification
	Changes required
	Modified report procedure

	Troubleshooting customization
	Errors in the interface specification

	Coding high-level languages other than ccperl
	Obtaining the T0046 package

	Appendix D. Notices
	Index
	Readers’ Comments — We'd Like to Hear from You

